

Marine Molluscan Assemblages in the Early Pleistocene of Sidestrand, Bramerton and the Royal Society Borehole at Ludham, Norfolk

P. E. P. Norton

Phil. Trans. R. Soc. Lond. B 1967 253, 161-200

doi: 10.1098/rstb.1967.0034

Email alerting service

Receive free email alerts when new articles cite this article - sign up in the box at the top right-hand corner of the article or click **here**

To subscribe to Phil. Trans. R. Soc. Lond. B go to: http://rstb.royalsocietypublishing.org/subscriptions

[161]

MARINE MOLLUSCAN ASSEMBLAGES IN THE EARLY PLEISTOCENE OF SIDESTRAND, BRAMERTON AND THE ROYAL SOCIETY BOREHOLE AT LUDHAM, NORFOLK

By P. E. P. NORTON*

Sub-Department of Quaternary Research, Cambridge University

(Communicated by H. Godwin, F.R.S.—Received 28 March 1966—Revised 8 May 1967)

CONTENTS

		PAGE		PAGE
1.	Introduction	162	4. The molluscan assemblage zones at	
	(a) The Icenian according to Harmer	164	Ludham, Bramerton and Sidestrand	168
	(b) The Icenian in the light of recent		(a) The Ludham zonation	169
	research	164	(b) Molluscan assemblages at Bramerton	174
	(i) In East Anglia	164	(c) Molluscan assemblages at Side-	111
	(ii) The 'Icenian' in the Nether-		strand	175
	lands	165	(d) The problem of climatic inter-	
_	,		pretation	176
2.	The sites studied		5. Discussion and conclusions	179
	(a) The Royal Society Borehole, Lud-	165	(a) Comparison with earlier malaco-	
	ham	165	logical work	179
	(b) Bramerton Common	166	(b) Comparison with micropaleonto-	
	(c) Sidestrand	166	logical results	179
			(c) Stratigraphical conclusions about	
3.	METHOD OF INVESTIGATION	167	the Icenian	181
	(a) Quantitative investigation of the		Tables and figures 2–4	182
	Mollusca	167	Appendix. Notes on the Mollusca	194
	(b) Relation of fauna to sediment	168	References	198

An account of a quantitative study of Mollusca from three East Anglian sites is given and from this work the author defines a series of molluscan Assemblage Zones and attempts to interpret the ecological and depositional environment in which they accumulated. The interpretations are thought to have local rather than regional significance. In the basal assemblage zone at Ludham (L.M. 1) and in zone L.M. 2 next above, the death-assemblages contain many Red Crag and Coralline Crag species, not recorded from Harmer's 'Icenian Stage' to which by his definition the Crag in the Ludham Borehole belongs. The L.M. 1 assemblage suggests deposition in sublittoral marine waters shallower than 50 m; the L.M. 2 assemblage suggests deposition at approximately 15 m. In zone L.M. 3 an association of mud-inhabiting bivalves dominated by Abra alba may have been in situ. Zone L.M. 4 is very poor in molluscs and the sediments are very silty. The zone L.M. 5 assemblage indicates deposition in less than 8 m of water; here the trend to shallower-water deposition of the assemblages culminates (the situation in zones L.M. 4 and L.M. 6 remaining obscure). The L.M. 5 and L.M. 6 assemblages, as regards their extant, intertidal species, resemble those of zones B.M. 1 and B.M. 2 (respectively) of the Bramerton Common sequence. This may indicate similar depositional conditions; yet each Ludham assemblage has proportionally more individuals of extant sublittoral species, which may indicate diachronism or changes of facies. At Sidestrand, the impoverished assemblage is interpreted as littorally deposited; it permits no analogy with the Bramerton and Ludham assemblages.

* Author's present address: Department of Zoology, The University, Glasgow, Scotland.

Vol. 253. B. 784. (Price 15s.; U.S. \$1.95)

[Published 21 December 1967

Inferences about climatic change based on evidence from pollen and foraminiferal sequences are compared with inferences from the molluscan assemblages. The former indicate a succession of warm ('interglacial') and cold (almost 'glacial') phases but the molluscs show no such clear variation, those with 'interglacial' affinity being present at all levels.

It is shown that Harmer's subdivisions of the Icenian in East Anglia (based mostly on surface exposures) are not capable of being fitted to the succession now known.

1. Introduction

Table 1 summarizes the stratigraphy of the East Anglian Crags. The stratigraphical work of Harmer (1898, 1900, 1902, 1920) on the molluscs of the Crags of East Anglia has recently been confirmed in its application to the Red Crag but found to be inadequate in its application to the Icenian by complementary work on the Foraminifera (Funnell 1961 a, b) and the pollen (West 1961).

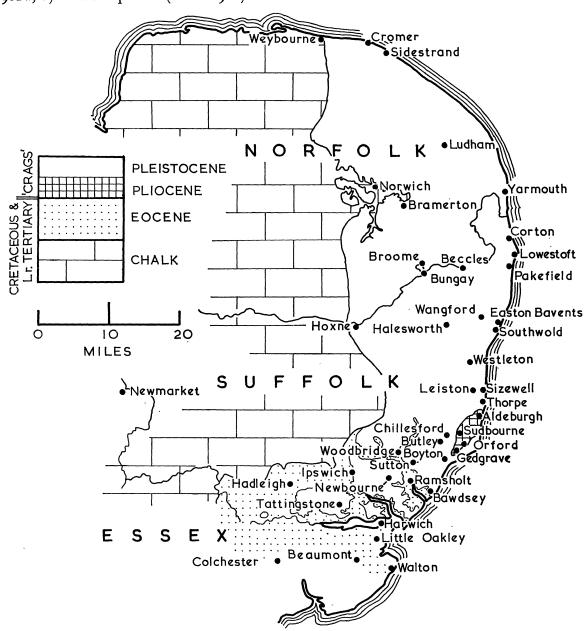


FIGURE 1. Map of East Anglia showing the Crags.

Table 1. Stratigraphy of the East Anglian 'Crags' up to 1950

NORFOLK CRAG MOLLUSCAN ASSEMBLAGES

International Geological Congress 1948			Pleistogene		PLIOGENE
		Ісепіяп	Crag	Вed	
Harmer (1920)	Cromerian	Weybourne Horizon Chillesford Horizon Norwich Horizon	Butleyan	Newbournian Waltonian	Gedgravian
1836–1898	Gromer Forest Bed series (Reid 1890)	Weybourne and Bure Valley Crag (Wood & Harmer 1868) Chillesford Clay (overlies Red and Norwich Crags) Upper Norwich Crag (equivalent to Chillesford sands: includes Weybourne Crag—Prestwich 1871) Lower Norwich Crag (= Fluviomarine Crag) equivalent to the Lower Division, Red Crag (Prestwich 1871)	Upper division (= Scrobicularia Crag of Wood 1866) and Unproductive Sands of Prestwich (1871) Lower division (of Prestwich 1871) forms 3 regions:	Beds between Stour and Deben Walton-on-Naze stage	Coralline Grag
Charlesworth 1836		Mammaliferous Crag (called Norwich Crag by Lyell 1839)		Ked Crag	Coralline Crag (Lower Crag)
			Upper		

(a) The Icenian according to Harmer

Harmer considered that the Icenian basin of deposition was separated from that of the Waltonian, Newbournian and Butleyan by a barrier of Coralline Crag (Gedgravian). The Icenian deposits succeed the Butleyan ones northwards and are nowhere superposed upon them.

The Icenian deposits stretch from the ridge of Coralline Crag at Aldeburgh in Suffolk (figure 1) to the north coast of Norfolk. They are underlain by Coralline Crag immediately to the north of Aldeburgh; then the Coralline Crag goes down below sea level and is not found at depth below Leiston. Harmer considered the Icenian sea less saline than the Red Crag sea, conjecturing that the Icenian basin was dammed by Scandinavian ice to the north (the 'Dover Strait' having closed in Red Crag times) and its sea diluted by rivers pouring in from the south. The Icenian deposits comprise three horizons.

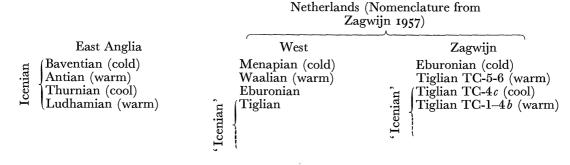
The Norwich Horizon was envisaged by Harmer (1920, pp. 498, 499) as the deposit of a 'shallow and widespread brackish sea', in which 'subsidence seems to have gone on pari passu with the deposition of sediment'. Little of Harmer's evidence was drawn from boreholes but he examined that at Southwold, for example, where through '150 ft. the Mollusca maintain the same recent and shallow-water character throughout'.

The Chillesford Horizon at its type site occurs above Butleyan Red Crag deposits. It consists of Chillesford Sands (only at Chillesford) and succeeding micaceous clays whose 'sinuous course' was mapped by Harmer (1902, fig. 76) who conjectured that they represented an ancient, wandering and estuarine course of the Rhine which established itself following an uplifting of the basin at the end of Norwich Horizon times. Correlation of the *Chillesford* clay with clay layers at other Icenian localities has been much criticized (e.g. Woodward 1881, p. 34) and remains unproved. Mollusca are found in the deposits only at Chillesford.

The Weybourne Horizon rests directly on the Chalk at the north Norfolk coast. Harmer supposed it to be the deposit of a locally transgressive sea, younger than the Chillesford Horizon. There is an impoverished fauna with *Macoma balthica* (the first record of this species in the Pleistocene of the southern North Sea: see Spaink & Norton 1967). The exact lateral and vertical relationships of the Weybourne Horizon are obscure.

Characteristic Mollusca of the 'Icenian Stage' are listed by Harmer (1900, p. 723; 1902, p. 446; 1920, p. 449). From these sources a list of the molluscs can be compiled, bearing in mind that some of the species, which Harmer's lists of 1900 and 1902 had contained, are absent from his 1920 list, which in turn contains names not listed in 1900 and 1902. Often, the species are listed elsewhere as characteristic of other stages; e.g. Waltonian (Harmer 1900, p. 712), Newbournian (Harmer 1902, p. 442) and Butleyan (Harmer 1920, p. 490).

(b) The Icenian in the light of recent research


(i) In East Anglia

The pollen and Foraminifera of certain Icenian sites have recently been investigated by West (1961), Funnell (1961 a, b) and Funnell & West (1962). Quantitative studies have revealed that a series of assemblage zones occurs. A series of climatic oscillations from warm to cold is indicated, not the progressive refrigeration of which Harmer (e.g. 1900,

p. 725) wrote. The micropaleontological zonation has been observed at Ludham (pollen from the Royal Society Borehole, Foraminifera from the Ludham Pilot Borehole 87 ft. to the west). Parts of it have been recognized also in surface exposures at Sidestrand and Bramerton in Norfolk and Easton Bavents in Suffolk. Stage names for each period of the vegetational succession (except for one final part recognized only in the Ludham Borehole which West—in West & Wilson (1966)—correlates with the Pastonian of the Cromer Forest Bed Series) have been proposed by West. They refer to the terrestrial sequence. The zones recognized on the basis of foraminifers, which display the concomitant sequence of marine events, have not been made the basis of a series of marine stages. The sequence of zones is given in table 8 (which contains the summarized results of the mollusc analyses).

(ii) The 'Icenian' in the Netherlands

West (1961, table 2) and Zagwijn (unpublished) have suggested correlations between the East Anglian non-marine stages and those of the Netherlands non-marine succession, as follows:

2. The sites studied

(a) The Royal Society Borehole, Ludham

This boring was made with the aid of a Royal Society grant in 1959. It was sunk between Ludham (figure 1) and Catfield at Grid Reference TG 385199. The location, method of coring and lithology of the borehole are described by West (1961). The lithology is summarized as follows:

depth o.d.	lithology
+20 (surface) to -25 ft.	soil, drift, etc.
-25 to -45 ft.	closely alternating bands of sand and clay with no shells
-45 to -63 ft.	shelly sediments with sand and clay
$-63 \text{ to } -85\frac{1}{2} \text{ ft.}$	clay with no shells
$-85\frac{1}{2}$ to -163 ft.	series of shelly sands, varying amounts of clay usually in seams.
	Basement Bed of large flints, up to 3 in. in diameter
–163 ft.	brown Clay (London Clay)

The surface of the London Clay here descends below its normal level of -90 ft. to -100 ft. o.d. as a depression which deepens eastward and is one of several depressions and closed hollows on the Crag base. The Ludham Pilot Boring from which Funnell took samples for his foraminiferal work was 87 ft. away to the west.

From -25 ft o.d. downwards in the Royal Society Boring the sediments clearly belong to the Crag Series. The series of samples which was obtained was well located and almost complete. Two cores only were lost; one at $-48\frac{1}{2}$ ft. to -55 ft. o.d. (at the pollen zone

L 3/L 4 boundary) and another at -57 ft. to -61 ft. o.d. (towards the base of zone L 3). Mollusca from the same depth as the first missing core were obtained from 752 g of material, recorded in the Bore Log as '20 cm of contamination from core above', lying on top of the -55 ft. o.d. core. Mollusca from the region of the second lost core were obtained from a sample retained by the $\frac{1}{20}$ in. mesh of the drilling mud sieve. No evidence of contamination of samples was seen during the work on pollen or Mollusca. The levels at which samples for Mollusca were taken are shown in table 2 (p. 182–187) and figure 2.

Previous studies

Zonations based on pollen (West 1961) and Foraminifera (Funnell 1961b) are summarized in table 8 (p. 180).

(b) Bramerton Common

The 'type' exposure of the Norwich Crag on Bramerton Common was excavated by Funnell in 1958. The site is on a tree-covered bluff of the River Yare, a few yards after the last house on the road from Bramerton, at Grid Reference TG 297060. Funnell took two series of samples, one from which he investigated the Foraminifera (Funnell 1961b) and another which has been used for the mollusc analyses. The mollusc sample series included samples at the same levels as Funnell's foraminiferal series and the positions at which they were taken are shown in table 3 (p. 189–191) and figure 3.

The sequence is summarized as follows:

depth below soil surface (cm)	lithology
0 to 260	upper deposits with silty clay, occasional pebbles and a thick band of yellow sand (115 to 255 cm)
260 to 405	brown-grey clay
405 to 485	upper shell bed: occasional clay bands
590 to 980	sands with occasional clay streaks and a few shell fragments throughout
980 to 1220	lower shell bed: occasional clay bands: basement bed below
1230 cm (11 ft. o.d.)	chalk

Previous studies

Many of Harmer's records of Mollusca were taken from J. Reeve's collection, now in the Norwich Castle Museum. Woodward (1881) listed Mollusca, giving estimates of frequency; his list distinguished between the fauna of the upper and lower shell beds.

The foraminifers of the Bramerton sequence have been described by Funnell (1961 b); the zonation is summarized in table 8 (p. 180).

(c) Sidestrand

A series of samples (as shown in table 4, p. 193 and figure 4) was obtained from an exposure of Weybourne Crag between Overstrand and Sidestrand, south-eastward from the end of the Overstrand promenade (Grid Reference TG 252410); here the Crag forms part of a mass of displaced Crag and Chalk. The samples came from three exposures.

1. Site SS/E: at the base of the succession there is an organic layer containing pollen, the latter indicating warmer conditions than elsewhere in this Crag. Samples were taken here in 1958 and 1962 by Dr R. G. West.

167

- 2. Site SS/B: the succession here begins with a stone bed. The organic layer of SS/E is missing. Samples were taken here by Dr B. M. Funnell in 1958.
- 3. Site SS/K: the succession here begins in a stone bed also. A series of samples from 80 cm of shelly material, equivalent to the basal part of SS/B, was taken by me in 1961. The succession at SS/B was described by Funnell (1961 a, p. 309) and is as follows:

height above base (cm)	lithology
3 00 to 33 0	grey, black and yellow clay
280 to 300	sand with regularly arranged clay bands
265 to 280	shelly sand with pebbles
190 to 265	reddish-brown sand with shells and a 1 cm thick clay band at 248 cm.
139 to 190	brown shelly sands with two thin clay layers (at 190 cm and 175 cm)
85 to 139	shelly sand with grey clay bands
base to 85	sand, with mainly comminuted shells and scattered pebbles. Larger shells and more pebbles of chalk and quartz
Stone bed below this	•

Two foraminiferal samples from SS/B were investigated by Funnell (1961b) who recognized a distinct zonal assemblage in them. Mollusca from an exposure at Sidestrand are listed by Reid (1882, p. 18), who shows the fauna of this part of the Weybourne Horizon to be comparatively poor.

3. METHOD OF INVESTIGATION

(a) Quantitative investigation of the Mollusca

The procedure for the mollusc analyses was as follows:

- 1. Samples of about 300 g were used, but less in some cases as with a few, basal, Ludham samples where only small amounts had originally been preserved; and more where a great deal of coarse material was present (stone beds), or where there was a poor but potentially interesting fauna, such as at the base of the Sidestrand sequence. It was found that 300 g of material usually contained good numbers of molluscs and although the species lists from the samples cannot be complete check-lists of the Mollusca of the time, they contain the frequent species and are therefore adequate for paleoecological interpretation.
- 2. Clayey samples, in which it was difficult to separate the Mollusca, were treated with hydrogen peroxide solution.
- 3. The samples were wet-sieved on meshes of 5660, 2830, 900, 380, 270 and 165 μ m. No determinable molluscs occurred in the size fraction below 165 μ m.
- 4. The following criteria were used in counting the Mollusca (under a stereoscopic microscope):
- (a) Any gastropod shell with an apex, or one lacking so little of an apex that the remainder could not have been identified alone, was counted as an individual.
- (b) The number of plates of any polyplacophoran species found in a sample was divided by eight, to give the number of individuals represented. If the answer was a smaller fraction than one-half, the species was recorded as 'present but only as fragments' (see (d) below). Otherwise numbers were given to the next half-individual.
- (c) A bivalve fragment with a hinge, or so much of a hinge that the rest could not have been identified alone, was reckoned as half an individual. To give the total number

of individuals present, the count for each species was halved (ex

of individuals present, the count for each species was halved (except for *Anomia squamula* of which no right valve was ever seen, so the number of *Anomia* individuals was held to equal the number of valves).

- (d) Unless a hinge, apex, or more than two polyplacophoran plates were found, the symbol ' \times ', to mean 'species present, but only as fragments' was placed in the tables (2, 3, 4, pp. 182–187, 189–191, 193) of results.
- 5. Percentage frequencies for each species were then calculated except where less than 40 individuals occurred in a sample. These percentages and in the case of samples with less than 40 individuals, the actual numbers of individuals (italicized) are given in tables 2 to 4.

(b) Relation of fauna to sediment

In order to consider the relation of the death-assemblages to the sediment, mechanical analyses (by wet sieving) were carried out. Certain species found in the assemblages have an infaunal mode of life at the present day. Their ecology (as regards the types of sea bed in which they now live) was considered against the particle-size composition of the sediments in which their shells had been deposited. This attempt to discriminate species which could have lived in a sediment from those which must have been brought in from elsewhere, during deposition, has three limitations to be borne in mind when any hypothesis is made.

- (i) The disturbance caused by depositional processes, coring (disturbed samples were usual in these investigations) and sampling, make it unlikely that a true picture of the original sediment as a habitat for molluscs is being obtained. For example, detritus forming a topmost layer of the seabed is important in the life of deposit-feeding species and will, in the samples here dealt with, have been lost or redistributed.
- (ii) Since all molluscs in the samples are fossils, it is impossible to say to what extent 'already dead' shells in the sediments influenced the nature of the ancient sea bed as a possible habitat for 'living' molluscs.
- (iii) In any case, even were it possible to identify a sediment as having been suitable for colonization by an infaunal species, it would remain unknown whether its fossils in that sediment had in fact been *in situ*, unless the sediment was undisturbed by coring and sampling and the fossils could be examined to see if the shells were in the life-position or had the valves together.

4. The molluscan assemblage zones at Ludham, Bramerton and Sidestrand

The molluscan death-assemblages, used below to characterize zones in which the zonal assemblage has individual ecological and depositional significance, are 'accidental'. Generally, they have obviously been produced by the sweeping together after death of species which, on the basis of their known ecology, occupied very different habitats on the sea bed.

Another characteristic of the Norfolk assemblages is the presence together in the samples of species whose ranges do not overlap at present. One such pair are Calyptraea chinensis (present northern limit at the Dover Strait) and Serripes groenlandicus (present southern

limit at East Finmark and Iceland). The feature occurs commonly in the Ludham sequence and it is further discussed on pp. 177 to 178.

A description of the series of assemblage zones which has been distinguished, and is shown in tables 2 to 4 (pp. 182–187, 189–191, 193) and figures 2 to 4, follows and possible inferences about environment are given. Climatic interpretation is dealt with separately on p. 176-179.

(a) The Ludham zonation

Beginning at the base of the Ludham succession, the following zonation is distinguished. Zone L.M. 1. -163 ft. to -131 ft. o.d.: zone of Rissoa curticostata, Anomia squamula, Calyptraea chinensis, Hiatella arctica, Abra alba, Cingula semicostata semicostata: also important but with fewer individuals are Nucella lapillus vulgaris, Venus ovata, Caecum glabrum and Mytilus edulis. Sediment chiefly composed of coarse to medium sand, coarser above -148 ft. o.d. The fauna is varied, usually with more than 35% of individuals of extinct species; the individuals of recent species being almost exclusively sublittoral at the present and dominated by those of mud-inhabiting bivalves and epifaunal forms. Many species are not characteristic of the Icenian (see below). The molluscan assemblages fall into two subzones which do not correspond with marked changes in lithology.

L.M. 1a. -163 ft. to -155 ft. o.d. Except at $-155\frac{1}{2}$ ft. o.d. there are fewer individuals of species now extinct: those of Rissoa curticostata are the most frequent but they do not dominate the assemblages.

The majority of individuals in this subzone belong to extant species: the sublittoral epifaunal Hiatella arctica, Anomia squamula and (less common) Calyptraea chinensis, the intertidal epifaunal species Mytilus edulis (a few specimens). The other ecological groups are less important; subtidal mud-bivalve species living at the present day are Macoma calcarea and Serripes groenlandicus (the latter is today characteristic of clay bottoms in arctic seas).

Some attempts were made (they are considered with subzone L.M. 1b) to determine the depth of water in which the assemblages might have been deposited; here it is suggested in anticipation that the two subzones seem to have been deposited in water of about the same depth. The small percentages of epifaunal intertidal species, not found above -155 ft. o.d., may have been brought into the L.M. 1 a deposits by incorporation of littoral deposits during transgression of the Crag sea.

 $L.M.\ 1b$, -155 ft. to -131 ft. o.d. The frequency of individuals of extinct species is higher in this subzone than in L.M. 1a, indeed than elsewhere in the boring. Rissoa curticostata is the most frequent fossil in the assemblage, Nucella lapillus vulgaris and Cingula semicostata semicostata are also common. The (extant) subtidal epifaunal species (the most frequent being Calyptraea chinensis) form the next most important group. Subtidal mud-bivalves, especially Abra alba, are also common, indeed more so than in subzone L.M. 1a.

In attempting to estimate the depth at which the L.M. 1 assemblages were accumulated, two lines of evidence are considered. First, apart from a few shells of Mytilus edulis in the subzone L.M. 1a assemblage, there are very few individuals of present-day intertidal species in zone L.M. 1. It is inferred that deposition of the assemblage was taking place at a depth on the sea bed too great for intertidal shells to be transported there, that is, well

Vol. 253. B.

169

BIOLOGICAL

below the 'belt of movement' (of Johansen 1901, quoted by Sorgenfrei 1958). Using Johansen's figure (of which we may remain critical) for the extent of this belt, we may argue that deposition took place in water more than 15 m deep. Secondly, in subzone L.M. 1 b substantial numbers of Abra alba occur. Records (mainly by Ford (1923, especially p. 182); also Petersen 1913; Eisma 1966) indicate that an Abra alba association occurs at 8 to 40 m in boreal seas (Ford, Petersen) though a smaller minimum depth would satisfy Spärck (1935). It occurs infaunally, in sea beds with more than 50% of material smaller than 500 μ m and about 20% or more of silt and clay (smaller than 60 μ m or Allen Grade VIII of Ford), though A. alba itself is stated by Eisma to live where silt-clay percentages are above 5% and probably where sand is predominantly fine. We see in figure 2 that such sediment conditions as the former are not represented in zone L.M. 1 and it is inferred that the A. alba individuals were not in their environment here but had been moved into the deposits after their death. If the water was more than '15 m' deep (as suggested above) then the A. alba shells must have been transported laterally or from shallower water, the latter being unlikely because it seems from Johansen's findings that too little transport to account for the abundance of A. alba would occur below 40 m (suggested lower limit for the A. alba association). These features of the assemblage are taken (using the limited available knowledge of depositional processes and molluscan ecology) to indicate that water depth was perhaps between 15 m (Johansen's figure) and 40 m—in the light of Spärck's observation quoted above a depth closer to 15 m may

Leaving this topic, another feature of both subzones and of the next assemblage zone (L.M. 2) is analysed in table 5, whence it can be seen that there is in zones L.M. 1 and L.M. 2 a group of species (some known living) whose recorded distribution in the Crags stops short in the Red Crag or Coralline Crag and does not continue into the Icenian (see Harmer 1900, p. 722 and 1914–25; Wood 1848–82). Funnell (1961b) makes the same remark about the Foraminifera in his zones L. I and L. II. However, zones L.M. 1 and L.M. 2 cannot be said to be Red Crag deposits. They contain many of the characteristic Icenian species listed by Harmer (references on p. 164), but typical Red Crag forms (Harmer 1920, pp. 495, 496) are lacking.

be preferred—at the position where the zone L.M. 1 assemblage was deposited.

Zone L.M. 2-131 ft. to -96 ft. o.d. Zone of Abra alba, Calyptraea chinensis, Caecum glabrum, Rissoa curticostata, Anomia squamula, Turritella triplicata triplicata, Mytilus edulis, Chrysallida spiralis and Hiatella arctica: Spisula triangulata and Diplodonta astartea are important but less abundant. A varied assemblage with many different ecological groups. The recent species principally deepwater in habitat, dominated at first by mud-bivalves, epifaunal molluscs and mixed-substratum infaunal molluscs in combination; the last category increases in importance later.

The following features distinguish L.M. 1 from L.M. 2:

- (a) at the top of zone L.M. 1 (-131 ft. o.d.) there is a rapid increase in the amount of medium-sand in the samples. Above -107.5 ft. o.d., there is an increase in fine-sand, silt and clay until at the top of the zone the samples have more than 30% of the fines.
- (b) just above the base of L.M. 2, there is a fall in the percentages of individuals of extinct species in the samples to a general level of about 25%. Rissoa curticostata remains the most frequent of the extinct species, but is not as important as in L.M. 1. Spisula

Table 5. Frequencies of certain species in the Ludham Borehole, which have not previously been found in the East Anglian Early Pleistocene deposits later than the Red Crag

frequencies of	t checies	restricted	tΩ
ii cquciicics o.	r species	LOSGITCECA	w

		110	queneres or sp	,	
zone	sample depth in feet below o.d.	Red Crag and Coralline Crag (%)	Coralline Crag (%)	Red Crag (%)	total (%)
L.M. 6	$45\frac{1}{2}$ to $48\frac{1}{2}$ $48\frac{1}{2}$ to 55 55 to 57	$2\cdot 3*\\ \times\\ 0\cdot 3$	 3·3† 0·9	 	$2.3 \\ 3.3 \\ 1.2$
L.M. 5	57 to 61 61 to 63 66 and 69	 	 0·3 		nil 0·3 nil
$^{ m (at-67)}_{ m L.M.~4}$	80 85	$\frac{1}{2}$		•••	$\frac{1}{2}$
L.M. 3	$85\frac{1}{2}$ to $86\frac{1}{2}$ 88 to 9191 to $9494 to 94\frac{1}{2}$	$1.1 \\ 1.2 \\ \times \\ 2.6$	0·1 0·8 4·0	0·1 	1.3 1.2 0.8 6.6
L.M. 2	97 to 99 $101\frac{1}{2} \text{ to } 106\frac{3}{4}$ $106\frac{3}{4} \text{ to } 108\frac{1}{2}$ $108\frac{1}{2} \text{ to } 110$ $111\frac{1}{2} \text{ to } 113\frac{3}{4}$ $115\frac{1}{4} \text{ to } 116\frac{3}{4}$ $117\frac{1}{4} \text{ to } 118\frac{1}{4}$ $120\frac{1}{4} \text{ to } 124\frac{3}{4}$ $126\frac{3}{4} \text{ to } 124\frac{3}{4}$ $129\frac{1}{4} \text{ to } 130\frac{3}{4}$ $132\frac{1}{2} \text{ to } 133\frac{1}{2}$	5·4 3·3 3·2 2·4 2·7 2·4 3·8 5·8 9·5 26·7 3·8	0.1 2.3 0.2 2.7 2.7 4.3 1.6 0.2 2.9 2.4	 0·4 	5·5 5·6 3·8 5·1 5·4 6·7 5·4 6·0 12·4 29·1 3·8
a	$132\frac{1}{2}$ to $133\frac{1}{2}$ $135\frac{3}{4}$ to $136\frac{3}{4}$ 143 to 144 146 to 147 148 to 149 152 to 153	$ \begin{array}{c} 7.7 \\ 2.5 \\ 3.3 \\ 1.7 \\ \times \\ 2.6 \end{array} $	1.0 1.4 0.8 0.4 0.6 0.9	 	3.9 4.1 2.1 0.6 3.5
L.M. 1	$\begin{array}{c} 155\frac{1}{2} \\ 157 \text{ to } 158\frac{1}{2} \\ 161 \\ 161\frac{3}{4} \\ 162\frac{1}{2} \\ 163 \end{array}$	13.6 2.0 1.9 3.9 1.5 $\theta.5$	0·2 0·6 5·1 2·6 3·3	 0·4 	13.8 2.6 7.4 6.5 4.8 0.5

Notes: ... indicates no individuals in this category. * One individual of Solariella maculata. † Includes 3.5 individuals of Astarte incerta. For other conventions see table 2, p. 182.

Species previously recorded only in the Red Crag and Coralline Crag are: Caecum glabrum, C. mammillatum, Calliostoma zizyphinum, Chrysallida obtusa, Odostomia conoidea, Rissoa obsoleta, Solariella maculata, Tornus pulchralis, Astarte basterotii, A. digitaria, Diplodonta rotundata, Ensis ensis, Limopsis anomala and Nucula nucleus.

Species recorded previously in the Coralline Crag only are: Cingula proxima, Rissoa inconspicua, Astarte incerta, A. parvula, Callista chione, Laevicardium decorticatum.

Species recorded previously in the Red Crag only are: Acmaea rubella, Calliostoma noduliferens, Mangelia ambigua and Nassarius elegans.

triangulata and Diplodonta astartea are other frequent extinct species, but they are less important than any of the recent ones.

(c) in L.M. 1 the most frequent group among the recent deepwater species in the assemblage is the epifaunal molluscs, but in L.M. 2 there are equal frequencies of mudbivalves, mixed-substratum (coarse, muddy bottom) infaunal molluscs and deepwater epifaunal ones. The mud-bivalve group continues to consist of Abra alba, which is the most frequent species in the assemblage, and Macoma calcarea which occurs once. Caecum glabrum is the main member of the mixed-substratum infauna group. The most frequent deepwater epifauna species is Calyptraea chinensis.

Higher in zone L.M. 2, the mixed-substratum infauna group decreases in importance in the assemblage and there is an increase in the frequency of the tidal-zone epifaunal molluscs (particularly *Mytilus edulis*) from about -114 ft. o.d. upwards and of the intermediate-depth commensal and parasitic species from -119 ft. o.d. upwards, the commonest species in this group being an ectoparasite of the polychaete *Sabellaria*, namely *Chrysallida spiralis*. These higher percentages of tidal-zone and intermediate-depth species, especially above -119 ft. o.d., may indicate that the assemblages were deposited in shallower water than previously, at a depth to which shells were transported from intertidal communities, i.e. within Johansen's 'belt of movement' or not far below (at about 15 m—Johansen's figure—or less).

In this zone, as in L.M. 1, species not characteristic of the Icenian occur; this has been commented on in the text (p. 170) and in table 5.

Zone L.M. 3 –96 ft. to $-85\frac{1}{2}$ ft. o.d. Zone of Abra alba, Rissoa curticostata, Calyptraea chinensis, Anomia squamula, Mytilus edulis, Chrysallida spiralis, Nucella lapillus vulgaris, Cingula semicostata semicostata and Hydrobia ulvae. Sediment mainly composed of fine sand, silt and clay, the silt-clay fraction being more than 25% by weight of the total.

In this zone, there is a great increase in the numbers of Abra alba. Presuming (from p. 170) that a seabottom sediment with more than 50% by weight of particles smaller than $500 \mu m$ and with more than 20% of silt-clay, forms a suitable substratum for colonization by the A. alba association at suitable depths, then it is permissible to conclude that the A. alba association could have colonized the zone L.M. 3 sediments. Although there is no real diminution in the number of species found in each sample, there are fewer ecological groups in the assemblages than in zone L.M. 2. Sublittoral epifaunal species are the only group apart from A. alba to be well represented as far as the extant species are concerned. There is little change in the frequency of intermediate-depth forms or that of intertidal species (Hydrobia ulvae appears here for the first time).

It is suggested that here we find an Abra alba association which, if not in situ, is deposited in sediments which it could have colonized in life. The quantities of shells from intertidal habitats which are found in the L.M. 3 assemblage prompt the suggestion that deposition took place in the shallower part of the A. alba association's range, which at the present extends upward to about 8 m, or following Spärck (1935), 5 m depth. Often at the present the Abra association occupies shallow and protected waters of an estuarine character and we may therefore suggest the existence of such conditions during the deposition of L.M. 3.

Table 5 shows that at -94 ft. o.d. there is a fall in the frequency of species whose occurrence is thought to be restricted to the Red Crag and Coralline Crag (some are known

173

living). It has been mentioned that Funnell (1961 b, p. 349) refers to a change in the foraminiferal fauna at about $-91\frac{1}{2}$ ft. o.p. in the Ludham Pilot Boring, from a 'Ludham Crag' to an Icenian type.

Zone L.M. $4-85\frac{1}{4}$ ft. to -64 ft. o.d. Very few Mollusca present, nine species in all and very few individuals. Sediments silt and clay.

The molluscs disappear with remarkable suddenness above $-85\frac{1}{4}$ ft. o.d. and in two samples none were seen at all. The Foraminifera show that sedimentation was occurring in very shallow water according to Funnell (1961 b, p. 350). West (1961, p. 445) states that the land surface was covered by a subarctic park-landscape vegetation and interprets the climate as having been almost glacial in nature. The absence of molluscan deposition in the sediments is not explainable, nor can interpretations about other features of the environment be derived from the very few molluscs recorded in this zone.

Zone L.M. 5 -67 ft. to -55 ft. o.d. Zone of Lepton nitidum, Spisula subtruncata, Mytilus edulis, Hydrobia ulvae, Macoma obliqua, Littorina littorea, Abra alba, Cardium edule and Clathrus clathratulus minutus.

As compared with zones L.M. 3 and L.M. 4, several features of the molluscan assemblage should be commented on.

- (a) Individuals belonging to extinct species are less common, forming not more than 20% of the assemblages. Rissoa curticostata is absent.
- (b) The part of the assemblage made up of present-day intertidal species increases greatly in numbers of individuals (e.g. of Mytilus edulis, Hydrobia ulvae, Littorina littorea and Cardium edule), reaching greater frequencies than in any previous zone. The four species mentioned tolerate low salinities. The freshwater species Planorbis leucostoma also occurs. Fossils of members of the present-day Ensis association are also present in the death-assemblage; these species are normally now found on sheltered shores.
- (c) Species today living around and below the low-water mark (intermediate-depth species) and sublittorally in mud show a sharp decrease in frequency. There are increased frequencies of sandy-mud and coarse-substratum infaunal molluscs (the commonest are *Spisula subtruncata* and *Lepton nitidum* respectively) and decreased frequencies of individuals of subtidal epifaunal species, to give a varied agglomeration of subtidal ecological groups within the assemblage, dominated by a group which at present inhabits clean shell-gravel.

Taking it as probable (for reasons considered on p. 170) that the *Abra alba* association would colonize the type of sediment found in zone L.M. 5 and seeing that the *Abra* shells are not more than 6% of the total of molluscs in any sample in this zone, it is apparent that, either, this possible habitat was unsuitable for some reason, or (maybe and) the shells were exhumed, transported and buried elsewhere after death. The high percentages of individuals of extant and intertidal species in this zone suggest that the water was too shallow for the *A. alba* association to colonize the bottom sediments or for its shells to outnumber the locally deposited intertidal shells; in such a case a water depth of 5 to 8 m or less (above the upper limit of the *Abra* association mentioned on p. 170) is postulated.

In the uppermost sample of the zone 3.3% of the individuals are not characteristic of the Icenian (table 5); this figure is higher than those otherwise found above zone L.M.2 and mainly accrues from seven individuals (little worn though broken) of Astarte incerta.

BIOLOGICAL

P. E. P. NORTON

Zone L.M. 6 –55 ft. to –40 ft. o.d. Zone of Calyptraea chinensis, Astarte montagui, Macoma calcarea, Yoldia oblongoides, Nucella lapillus vulgaris, Venus ovata, Spisula subtruncata, Anomia squamula and Tellina praetenuis. Sediment mainly medium sand and finer, at the top of the zone almost exclusively fine sand, silt and clay, and above it, silt and clay. No Mollusca occurred above this zone. Compared with zone L.M. 5 the molluscan assemblage shows several differences:

- (a) Extinct species gain in frequency. Tellina praetenuis and Macoma obliqua are important here. Both are similar to the recent shallow-water form M. balthica and were perhaps elements of an Icenian intertidal fauna which is now unknown. Yoldia oblongoides is another important extinct form.
- (b) Recent species characteristic of the intertidal region almost disappear in zone L.M. 6.
- (c) Sediments in the zone would (on the basis of such criteria as those on p. 170) have been suitable for colonization by $Abra\ alba$ which is uncommon. $Macoma\ calcarea$, which has a similar habitat but at the present a more northern range than $Albra\ alba$, is very frequent at $-45\frac{1}{2}$ to $-48\frac{1}{2}$ ft. o.d.
- (d) The mixed-substratum infauna (Astarte montagui is the most frequent species) is common for the first time since zone L.M. 2 Venus ovata also increases in frequency in zone L.M. 6. Both belong to ecological groups associated with coarser substrata than those of L.M. 5 (and note the existence of such sediments in zone L.M. 6).
 - (e) Lepton nitidum, common in zone L.M. 5, is absent from zone L.M. 6.
 - (f) Subtidal species reach very high frequency.

The frequency relation between the intertidal and subtidal species appears to indicate deeper water deposition than that of the zone L.M. 5 assemblages. The reason for the lack of the abundant intertidal fauna of L.M. 5 is obscure and no interpretation of the changes that accompanied the final disappearance of the population is offered. The relation between the very clayey and silty deposits above this zone and those (zone L.M. 4) above L.M. 3 is that both contain pollen spectra which indicate cold conditions following warm ones (table 8).

(b) Molluscan assemblages at Bramerton

Table 3 and figure 3 show that the Bramerton assemblages are much poorer in species and variety of ecological groups than the Ludham ones. In particular, the subtidal groups contain many fewer species and some groups are missing altogether. The intertidal groups contain fewer species. This paucity may be related to smaller water depth and lower salinity than at Ludham, and to deposition in an area of uniform seabottom. On the other hand, several species occur which are not found at Ludham: Nucella lapillus lapillus, Patina pellucida?, Hydrobia minuta, Littorina littorea var carinata.

Zone B.M. 1. Base of section (11 ft. o.d., levelled 1965), to 610 cm below top. Zone of Hydrobia ulvae, Cardium edule, Abra alba, Hiatella arctica, Calyptraea chinensis, Mytilus edulis and Macoma calcarea. Sediment principally sand.

The subtidal part of the molluscan assemblages is not varied (much less so than in any Ludham zone). The 1220 cm sample contains 45% of Abra alba individuals, which could not be in situ in these sediments. The rest of the zone has a restricted fauna with few extinct forms. Intertidal species are the most frequent, especially Hydrobia ulvae,

Mytilus edulis and Cardium edule, the only other common molluscs being members of the subtidal epifauna. Higher in the zone, the coarser sediments and higher percentages of intertidal and worn shells, with rather few subtidal ones, suggest shallow water deposition in the 'belt of movement', thus above 15 m according to Johansen. The increasing percentages of worn individuals appearing above 920 cm may be a reflexion of increasing wave action.

All the characteristic species of the assemblage tolerate low salinities (to a mean minimum of about 2%). It is suggested that the deposit represents very shallow waters in a low-salinity sea, with considerable turbulence. The intertidal part of the assemblage is similar to that of zone L.M. 5 at Ludham, though much more important in the fauna. Similar conditions of deposition may be indicated but it is not possible to say whether the two zones are synchronous.

Zone B.M. 2. 610 cm to 485 cm below top. Zone of Macoma obliqua, Spisula subtruncata, Cardium edule, Macoma calcarea, Mya arenaria, Tellina praetenuis and Lepton nitidum. Sediment principally medium sand, at 500 cm below top silt and clay occur and continue as the main component above the level (490 cm) at which Mollusca cease to occur.

There are larger percentages of extinct molluscs than in zone B.M. 1. The part of the assemblages belonging to species still living shows fewer examples of Hydrobia ulvae, and is dominated by the intertidal 'Macoma community infauna' group and by subtidal bivalves of mud and sandy mud. More ecological types are present than in B.M. 1. Higher in the zone the numbers of intertidal forms diminish, rather in the same way as has been remarked for zone L.M. 6 at Ludham which occupies a similar position at the end of a period of mollusc deposition.

The B.M. 2 fauna is similar to that of L.M. 6 in other respects. Macoma obliqua and Tellina praetenuis are common in both. At both sites Hydrobia ulvae is less common in this zone than the next lower zone. At both places Macoma calcarea and Spisula subtruncata are frequent in the subtidal faunas. In zone B.M. 2, however, the subtidal epifauna species are infrequent. Although these similarities may indicate similar conditions of deposition, it is not possible to say whether or not the two zones are synchronous.

(c) Molluscan assemblages at Sidestrand

Table 4 and figure 4 show that the fauna in the Weybourne Crag at Sidestrand is an extremely impoverished one, and the environmental conditions appear to have been more unfavourable to mollusca than those at Ludham or Bramerton. Three species were not found at Ludham or Bramerton: Macoma balthica, Zirfaea crispata and Tornus supranitidus?. The Sidestrand sequence forms one assemblage zone.

Zone of Macoma balthica, Cardium edule and Mytilus edulis, at Sidestrand. Sediments principally sand, but finer in the sample at the base of SS/E. Fauna is predominantly of recent and intertidal species, dominated by Macoma balthica. The other Tellinidae found at Ludham and Bramerton (M. obliqua, M. calcarea and Tellina praetenuis) are very rare. The species in this assemblage tolerate low salinities, except for Donax vittatus. Sorgenfrei (1958, table 11) deduces that this species will tolerate an average minimum salinity of 3.3% but the figure could be fortuitous—most tolerances in Sorgenfrei's table are assessed on the basis of range of the species in the Kattegat, whereas D. vittatus is recorded from the

North Sea coast of Denmark where it may be at the limit of its range locally. This tolerance of low salinities may just be a quality of the littoral habit of the species, a phenomenon already noted by Fischer (1948, p. 115) in the present-day faunas: but it is also possible that it demonstrates that they lived in a brackish sea. The almost exclusive occurrence of intertidal species in the assemblages suggests an extensive area of tidal water and deposition at only a few metres depth (if it were not intertidal), very few subtidal shells being cast on the shore.

There is no part of the Ludham and Bramerton successions with which this zone can be compared, and the near-disappearance of several Tellinidae and appearance of *Macoma balthica* sets the zone apart from those so far distinguished. It may belong to a geographically distinct theatre of deposition, or perhaps to a later time. Thus it remains to determine the relationship between Harmer's Weybourne Horizon (including the Bure Valley Beds and Weybourne Crag) and the Ludham and Bramerton sequences.

(d) The problem of climatic interpretation

In studies of the Pleistocene the recognition of glacial and interglacial climatic episodes is important. Evidence for such climatic episodes has been based on studies of pollen and of Foraminifera. The question is whether it is possible to discriminate between glacial and interglacial conditions by means of marine Mollusca, and to determine this it is necessary to consider changes in molluscan faunas associated with late-glacial (late Weichselian) and post-glacial (Flandrian) climatic changes.

Fossil pollen, Foraminifera and Mollusca occur in the deposits laid down after the Weichselian late-glacial ice retreat in the Oslofjord and Bohuslän regions of Scandinavia. They have been studied by Brøgger (1900–1901, Mollusca), Brotzen (1951, Foraminifera),

Table 6. Some species of the Norfolk sites and their time of first arrival in the Oslofjord and Bohuslän late and post-glacial deposits

Hiatella arctica \
Macoma balthica

Acmaea rubella
Buccinum undatum
Chrysallida obtusa
Abra alba
Cardium edule
Cyprina islandica
Modiolus modiolus
Mya truncata

Chrysallida spiralis Hydrobia ulvae Mysella bidentata Venus ovata

Caecum glabrum
Chrysallida indistincta
Cardium scabrum
Chlamys opercularis
Corbula gibba
Ensis ensis
Lepton nitidum
Spisula elliptica
S. subtruncata
Zirfea crispata

late-glacial arrival. Present in all later deposits

post-glacial group 1. Present in all later deposits

post-glacial 'general' group, time of first arrival not the same at both localities

post-glacial group 2. Arrive shortly before, or at, the climatic optimum time

Feyling-Hanssen (1957, Foraminifera), Hafsten (1960, pollen) and Hessland (1946, a general survey of the Bohuslän fossils). As the climate improved after the retreat of the ice, species immigrated to the region. The order of arrival of the Mollusca, of which 97 species are common to the Oslofjord and the Bohuslän successions, is rather similar at the two sites. The molluscan immigration sequence can be related to the sequence of climatic changes demonstrated by the pollen and Foraminifera, and it is possible to discern groups of Mollusca which arrived for the first time in the late-glacial, the early post-glacial, the post-glacial as a whole, and the later post-glacial time around the climatic optimum, as shown in table 6. The groups in this table are established on the basis that the species had either arrived or not arrived in the Oslofjord and Bohuslän deposits at particular times of climatic importance in the sequence. It is probable that the succession of species in the Oslofjord-Bohuslän deposits is controlled in the main by climate, not by local bottom sediments, as the earliest-arriving species persist in the deposits thereafter, many specimens being in raised-beach and shell-bank deposits which one would expect to contain samples from many inshore bottom communities. This use of immigration-times in the late- and post-glacial sequence of Oslofjord and Bohuslän employs limits to the immigration phases that are as close as possible to those employed by Funnell (1961a) in his studies of the foraminiferal succession.

Twenty-five of the species concerned are present in the Norfolk sites and are listed in table 6. The percentage occurrence of the groups in table 6 was calculated for each level in the Ludham, Bramerton and Sidestrand deposits. It was found that species immigrating to the Oslofjord-Bohuslän deposits only at the post-glacial climatic optimum time occur in all the samples studied, with the exception of three very poorly populated samples in Bramerton zone B.M. 1. Accordingly it appears that conditions during the time of deposition at the three sites never deteriorated beyond these encountered during the postglacial climatic optimum in the low-boreal region of the North Sea (or shortly before it, allowing for some lag in immigration of molluscs behind the time at which conditions became warm enough for them).

This interpretation of climate does not agree with those made by Funnell (1961 b) and West (1961) who recognize a series of temperate and cold alternating periods (table 8). During the coldest periods which have so far been recognized, the Thurnian and Baventian terrestrial stages, the Mollusca are mostly absent. Whether their absence was ultimately caused by low temperatures cannot be determined. Thus the molluscan populations do not vary with climate as sensitively as the pollen and Foraminifera.

The molluscan assemblages of the Norfolk sites suggest that during this part of the early Pleistocene, a different climatic regime, or thermal ecotypes of the molluscan species different from the modern ones, may have been present in the North Sea. For instance, the faunas contain species whose geographical ranges do not overlap today, shown in table 7. To name a single example, one pair which occurred in almost all the Ludham samples are *Serripes groenlandicus* and *Calyptraea chinensis*. The feature can also be discerned in the Bramerton samples, though it is not so well marked in the Sidestrand fauna. Baden-Powell (1956) has observed it in other East Anglian deposits.

Two explanations may be suggested for the presence together of species whose modern distributions do not overlap. First, it is possible that the marine temperature regime (or

BIOLOGICAL SCIENCES 178

at least those features of it which controlled molluscan distribution) included mean annual values similar to those of the boreal seas of today, but that temperatures ranged higher and lower during the annual cycle, allowing species which are today distributed mainly north and south of the boreal region, to live side by side with the boreal species and each other. Sorgenfrei (1958) inferred an analogous marine temperature regime in the marine upper middle Miocene of Denmark though here the general temperatures were thought to be similar to those of the modern lusitanian region, with a greater annual range. Alternatively, it is possible that the 'anomalous' Mollusca (table 7), though conchologically the same as the modern forms, existed as different ecotypes as regards their temperature tolerance. It is known that many 'cosmopolitan' modern species such as *Hiatella arctica* and *Mytilus edulis* exist over their range as a series of climate-ecotypes adapted to different latitudinal temperature regimes. In this alternative it is not obligatory to suppose that the early Pleistocene North Sea temperatures differed from those of the present.

Table 7. Ludham Borehole species whose distributions do not now overlap North (N) and south (S) points in the north-west Atlantic at which ranges begin and finish

					а	t 44111	icii i a	inges	, Degii	i and	111113	11				
species names	Franz-Josef Land	Spitsbergen	Murman Coast	E. Finmark	N. Iceland	Nordkapp	W. Finmark	Norway, c. 67° N	S-W Norway	Oslofjord	Shetland	Lewis	Dover	Arcachon	Lisbon	S. from Lisbon
Serripes groenlandicus	\mathbf{N}				\mathbf{S}											
Acmaea rubella	N					\mathbf{S}				•						
${\it Macoma~calcarea*}$	N								\mathbf{S}							
Trophon clathratus var. gunneri	N?	•	•	•	٠	•	•	•	•	•	S	•	•	•	•	•
Abra ovata													\mathbf{N}			S
Astarte digitaria													\mathbf{N}			S
Callista chione													\mathbf{N}			S
Calyptraea chinensis													\mathbf{N}			\mathbf{S}
Diplodonta rotundata	•							٠.					N?			\mathbf{S}
$Turritella\ triplicata$															\mathbf{N}	S

^{*} A relict population of Macoma calcarea exists in the Danish Belt Seas.

In considering the modern distribution pattern of the species of table 7 in relation to these suggestions, we must suppose that the changing events of the Pleistocene have extinguished either the extraordinary temperature regime, or the ancient molluscan ecotypes, so that the modern ranges of the species concerned have withdrawn northwards and southwards as the case may be.

Some molluscan populations which do not breed in their own locality are maintained by planktonic larvae from remote breeding populations, currents sweeping the veligers in over long distances (Thorson 1966). This will not explain the present case, since embryological information for three species in table 7 shows that development is non-pelagic in *Macoma calcarea*, *Trophon clathratus* var *gunneri* (Thorson 1947) and *Calyptraea chinensis* (Fretter & Graham 1962) and thus long-range transport of larvae is not a factor maintaining their populations.

In conclusion, it is clear that the solution of the problems raised must be the object of future research, in which methods such as oxygen-isotope-ratio measurements of temperature may be very important.

5. Discussion and conclusions

(a) Comparison with earlier malacological work

Ludham

No comparison with earlier work can be made in the case of Ludham. However, some comments have been made on the occurrences of species previously found only in the Coralline and Red Crag (some are also known living); these are greatly more frequent in zones L.M. 1 and L.M. 2 than elsewhere. The following Mollusca, found in the Ludham samples, have not been recorded from the Crags before: Chrysallida indistincta, C. spiralis, Gibbula cf. spastica, G. cf. nehalenniae, G. cf. pennanti, Odostomia scalaris.

Bramerton

A list of the Mollusca from the 'Upper' and 'Lower' shell beds is given by Woodward (1881, pp. 42–53) on the authority of the collector James Reeve. The small samples used in my studies contained most of the species that Reeve had marked (subjectively) as 'very common' and 'common', as well as some other species which had escaped being classed in either of these categories because of small size and (or) fragility. The following (mainly small and fragile) Mollusca, listed in table 3, were not recorded from Bramerton by Reeve: Patina pellucida?, Caecum glabrum, C. mammilatum, Cingula semicostata semicostata, Calyptraea chinensis, Tellimya pumila?, Mysella bidentata.

Sidestrand

Harmer (1905) gave a complete list of Weybourne Crag Mollusca. Reid (1882) listed Mollusca, with assessments of frequency, from the Weybourne Crag at Sidestrand. Compared with my list in table 4, both Harmer's and Reid's lists contain many more species. Table 4 includes all the species (except Astarte borealis, now semisculata) that Reid classed as 'very common', almost all the ones he classed as 'common' and one which he gave as 'rare'. It lists the following Mollusca for the first time in the Weybourne Crag: Hydrobia ulvae, Spisula subtrunctata, Astarte montagui?, Tornus subcarinatus?

(b) Comparison with micropaleontological results

The correlations between the assemblage zones recognized in these malacological studies and those recognized on micropaleontological grounds are summarized in table 8. The quantitative study of the fossil Mollusca has been perhaps more laborious than micropaleontological investigation, but it has yielded useful results of its own. The molluscs give an account of more localized conditions than the microfossils, and appear to be much more closely related to the local sediments. The technique may prove very useful later, to determine differences of marine depth at a level shown to be synchronous by micropaleontological methods.

Until better understanding of marine temperatures in the early Pleistocene North Sea exists, it is only possible to characterise climatic change by means of microfossils, and in this respect, the value of the malacological method is at present restricted.

180

BIOLOGICAL PHILOSOPHICAL THE ROYAL TRANSACTIONS

SOCIETY

OF

Depths given, unless otherwise stated, are referred to o.D.) OF

PHILOSOPHICAL THE ROYAL TRANSACTIONS SOCIETY

BIOLOGICAL SCIENCES

Possible stagnant, bay-B II. 485 cm to 980 cm L 1. –119½ ft. to –165½ ft. 'Ludham Crag'. An abundant fauna similar to the Newbournian–Butleyan Red Crag but lacking evidence of marked cold. Warm climate. Shallow, sublittoral environ-BI. 908 cm below top, Sidestrand Full-interglacial climate. Correlation of L V and Atlantic, southwestwards. Full-interglacial climate head sea with fresh-L IV. -72½ ft. to -82½ ft. Conditions cold, but perhaps not glacial: possible non-sequence at top estuarine or bay-head environment, or by closure Continuing warm (though deteriorating) climate. Water perhaps less than 50 ft. deep. Definite cooling: semi-interglacial conditions fauna probably caused either by a very shallow Foraminiferal zones (after Funnell 1961b) 18½ ft. | top | Semi-glacial conditions. Correlation of these to base (114 ft.) Bramerton L. III. -82½ ft. to -91½ ft. The first 'Icenian' assemblages. Marked impoverishment in the of channel connecting North Sea Basin with water influx below top. L II. -91½ ft. to -119½ ft. 'Ludham Crag Ludham: Pilot Borehole B III 0-485 cm belowB I is suggested ment, water depth perhaps 50 ft. Bramerton L VI. -38½ ft. to -54½ ft. Suggested correlation with B II L V. $-54\frac{1}{2}$ ft. to $-72\frac{1}{2}$ ft. Definite enrichment of zones is suggested fauna. Open sea con-Pliocene-relict forms Ludham Ludham $-32\frac{1}{2}$ ft. to $-38\frac{1}{2}$ ft. ditions L VII tentative correlation with B. II shallow, inter-glacial to glacial, E.B. II, 265 cm to 300 cm. Sea no foraminifera Foraminifera Easton Bavents zonation (after Funnell & West 1962) L 4 a. Baventian. Cold at 300 cm L 4 b. Baventian. 100 cm to 180 cm below 490 cm below L 3. Antian, 380 cm to Pollen no pollen top temperate mixed coniferous forest with top Pterocarya and Tsuga Oceanic open heath vegetation L 1a. Ludhamian. –112 ft. to –132 ft. and at –137 ft. (no pollen below). Forest cover of coniferous Temperate oceanic climate, getting slightly colder above –97 ft. Forest remains prevalent. *Pterocarya* and *Tsuga* pollen L 5. Temperate. –22 ft. to –27 ft. Correlated with Pastonian (1966) arctic park landscape vegetation L 1 b. Ludhamian. -85 ft. to -112 ft L 4 c. Baventian. Glacial. $-27~{\rm ft.}$ to $-35~{\rm ft.}$ A little warmer Ludham pollen zones (after West L 4b. Baventian. Glacial. -44 ft. trees with Pterocarya and Tsuga. L 3. Antian. Interglacial. -52 ft. L 2. Thurnian. Cold. -62 ft. to Cold oceanic climate with sub-1961; West & Wilson 1966) Possible non-sequence at base No pollen, -35 ft. to -44 ft. (Royal Society Boring) Climate temperate than L4b to -52 ft. to -62 ft. -85 ft. than in L.M. I, possibly about 15 m deep finally. Greater percentage of Mollusca is recent; dominated by Abra alba, possibly not in situ except at very top. Intertidal L.M. 5. -55 ft. to -67 ft. Water depth cabove 1554 ft.) fauna is predominantly extinct. In L.M. 1a (below -1554 ft.), fauna dominated by deepwater epifauna spp., with intertidal elements. Water depth throughout, perhaps 15-40 m with Macoma balthica, impoverished and predominantly intertidal: water probably L.M. 2. –96 ft. to –130 ft. Water shallower very shallow. Relation to Bramerton and 15 m, possibly only present. May represent the beginning of about 15 m or less. Abra alba assemblage in situ. Pre-Icenian element in the fauna succession above this zone. Water depth similar, though not clearly synchronous. L.M. 5 has more deepwater individuals hard to interpret. B.M. 2 appears to be mollusca, probably as a result of silting (perhaps caused by coldness of climate perhaps less than reducing vegetation cover of land soils) greatly reduced, fewer ecological types L.M. 6. -40 ft. to forms begin to occur frequently in the L.M. 1. -131 ft. to -163 ft. In L.M. 1b whether they are synchronous. Many L.M. 3. -85 ft. to -96 ft. Water depth Sidestrand (Weybourne Crag). Fauna 610 cm below top –55 ft. Faunas are similar but it is not clear extinct forms. No molluscs in either Ludham deposits not shown by the Ludham intertidal assemblages in these zones a few metres a shallower-water deposit with an L.M. 4. -67 ft. to -85 ft. Very few Ludham: Royal Society Borehole Mollusc zones true Icenian conditions impoverished fauna below top, to base (11\frac{1}{4} ft. o.d.). few sub-tidal forms fauna with very Shallow-water B.M. 1. 610 cm B.M. 2. 485 to Bramerton than B.M. 1 Mollusca deposits

in the sequence cannot be related to those between Harmer's horizons.

(c) Stratigraphical conclusions about the Icenian

NORFOLK CRAG MOLLUSCAN ASSEMBLAGES

It is not possible to reconcile Harmer's stratigraphic subdivision of the East Anglian Icenian with the micropaleontological and malacological zonations now known. A new pre-Icenian 'Ludham Crag', which is not of the nature of the Red Crag, has been recognized on the basis of its content of Foraminifera and Mollusca, the position of the Chillesford Clay in the succession is obscured and the recently recognized boundaries

The Icenian (including the East Anglian and Netherlands series) remains ill-defined in a time-stratigraphic sense. The fauna is rather impoverished. Many characteristic extinct forms occur, such as Rissoa curticostata, Nucella lapillus vulgaris, Tellina praetenuis, Macoma obliqua, and Yoldia oblongoides. Species now absent from the North Sea occur, their present distribution being entirely to the northward or southward. The temperature conditions affecting the composition of the molluscan fauna may have differed from those of the modern North Sea, or many species in the faunas may have been represented by extinct ecotypes. Although the conditions in which the Icenian deposits accumulated may have continued in a modified form in the marine phases of the Cromer Forest Bed series, such conditions and their dependent molluscan fauna are singular and have not appeared again. It is therefore useful to retain the word 'Icenian' to denote this facies of deposition in the early Pleistocene North Sea basin, even though the Icenian deposition in East Anglia and the 'Icenian' deposition in the Netherlands appear not to have the same chronological extent (see Spaink & Norton 1967).

This work formed part of my studies in Cambridge towards the degree of Ph.D. My warmest thanks are due to Dr R. G. West, my supervisor during that time, and to Professor H. Godwin in whose subdepartment it was my privilege to be. In the geological field I am grateful to Dr B. M. Funnell and Dr R. W. Hey of the Sedgwick Museum at Cambridge, Mr Spencer at the City Museum, Ipswich, Dr S. van der Heide and Mr G. Spaink of the Geological Survey of the Netherlands at Haarlem, and Professor T. Sorgenfrei and Ph. Cand. L. B. Rasmussen of the Danish Geological Survey in Hellerup; with all these I have had discussions, and have made visits, with the kindness of those named, to the Netherlands and Denmark. In the zoological field Dr K. Joysey and Dr A. Bidder of the Museum of Zoology at Cambridge have helped by allowing me access to specimens, as have the staff of the Mollusca and Paleontology Departments at the British Museum (Natural History). I have to thank also Mr N. A. Holme with whom I had many discussions during a visit to the Plymouth Laboratory of the Marine Biological Association (with kind agreement of the Director), and Ph. Cand. Ockelmann whom I visited in Elsinore. In Glasgow, Dr C. M. Yonge, Dr J. Bowden and Mr D. Heppell have been most helpful on many occasions.

BIOLOGICALSCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS

BIOLOGICALSCIENCES

PHILOSOPHICAL THE ROYAL TRANSACTIONS

P. E. P. NORTON

NSACTIONS		TY				SCIE	SCIENCES	ES	<u>ا</u>		i i			ra E	NS/	TRANSACTIONS	0		S	CC	IE			4.	<u> </u>		SCIENCES	Si			
L.M. 6	42 45·5–48·5 48·5–55	3		 Ž		· × ;				S ××5	×			10B	A dot indicates		a nii resuit.	esunt.	₽ · · · }		cates .	that ti	ragme	× indicates that fragments only 2.3	ы у we 	were found.	nd.			• •	
L.M. 5	55–57 57–61 61–63	· 9 · ×	. 0		• • • •	3.1 4.9		0.3	7.6	9.6 9.6 6.4 0.4				.			×		4. S. × ·											• • •	1
L.M. 4	, 66 69 73 76 80 85			• • • • •	• • • • • •	• • • • • •				·~ · · × ×											0.55										1
L.M. 3	85·5-86·5 88-91 91-94 94-94·5		0.2			×× ·	0.5		1.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.1				0.5							0.5		4.00	2.2 2.4 1.1 0		0.5	rc 61 ∞	.		}
L.M. 2	97-99 101:5-106:75 106:75-108:5 108:5-110 111:5-113:75 117:75-118:75 123:75-124:75 126:75-128:75 129:75				· · · · · · · · · · · · · · · · · · ·	$\begin{smallmatrix} 0 & 0.9 \\ 0.2 & \cdots & \times & \cdots \\ 0.2 & \cdots & \cdots & \cdots & \cdots \\ $				88.00.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.5	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		0.5	0	<u></u>				0.1 0.2 0.1 0.1 0.1				0.4.6.1.6.4.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9		0.2 0.5 0.5 0.5	0			1
$\text{L.M. 1}b\left\{\rule{0mm}{1.5mm}\right.$	132-5-133-5 135-75-136-75 143-144 146-147 148-149 152-153					0.3				0, × 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,				0.3 0.3								0.6 0.5 0.5 0.5 0.5 0.5		0.4	01.					.	1
$\text{L.M. 1} a \left\{ \right.$	155·5 157–158·5 161 161·75 162·5 163		• • • • • .	0.5	• • • • • •					4.51.55 4.68 6.89 6.99									× · · · · ·			0.5									1
limits of assemblage zones suggested in the text	sampling depths in feet below ordnance datum	mmoteowal eidronal	Littorina littorea	Galliostoma zizyphinm	Lepidochitona cinerea	Cardium edule	Mya arenaria	M. cf. arenaria	spalu nidorbųH	silubə sulityM	Retusa obtusa	husiqenosni noeziA	R. cf. inconspicua	siralase aimoteobO	O. cf. scalaris	Callista chione	sutativa xanoa	Ensis ensis	E. siliqua	nludat anillsT	ทางการ กูโก	Chrysallida indistincta	C. obtusa	C. cf. obtusa	C. spiralis Montacuta ferruginosa	M. cf. ferruginosa	Turbonilla elegantissima	Mucinum undatum	Nassarius incrassatus	N. cf. incrassatus	-
		freshwater	n s	rocky				, Wa	coma	<i>Salthic</i>	'Macoma balthica community' tidal zone molluscs	muni e mol	ty, lluscs				clear at lo	clean sand at low tide	90		a.		P. 0	parasites and commensals intermedic	es anc ensals rmedi	l ate-de	rasites and mmensals intermediate-depth spp.	1 1 .	predators	Sir	
																								ਸ਼)	L.W.S	and	pelow				

		AGES 183	110011111111		LK CRAG MOL					
T		O. cf. conoidea				0.1				
	commensals	nsbionos nimoteobO	.10 0.4 0.5 1.5	0.7 1.1 						
	ommo	M. cf. bidentata				0.1				S
	٥	ntatabid allesyth			0.1					
	e ince	V. cf. ovata	7.7 3.1 0.9	000 000 000 000 000 000 000 000 000 00	.0.0 .0.0 .0.0 .0.0 .0.0 .0.0 .0.0 .0.					SCIENCES
	wide tolerance	N. osata	0.000 000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.		1.9 0.5 0.0 1.2 1.2 1.2 1.2 1.3	0.5 1.5 3.	· · · · × ·	1.0 2.2 1.9	1.1	
		Venus lasciata		0.3	0.1					
		poindilla aluside	0.1004.0	$\begin{array}{c} 1.1 \\ 0.2 \\ 0.9 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.6 0.6				
		L. cf. nitidum	0.5							_
	coarse grade substratum	mubitin notdə.L				0.5		13·7 5·9 2·0		L
	arse g bstra	Gouldia minima	.0							5
	S S	G. cf. scabrum							2.1	5
		Cardium scabrum	0.5	0.5	4	0.4 0.1	· · · · ×	9.0 9.0 9.0 9.0	·× ·	S
50.5		Arcopagia crassa		0.3	0.2 0.1 	0.4				
- 1100		Venerubis decussatus or pullastra			0.1					
1000		รทอาวทน บาทวทกุ	0.5							-OF
114:	um atter)	G. cf. gibba	6.							
mostly on lower littly on lower	mixed substratum (mud+coarse matter)	Corbula gibba	0.7 3.0 0.6 0.6	0.5	$0.1 \ 0.1 \ 0.2 \ 0.2 \ \cdots$	· · · 0		0.5	2.1	
	d suk	Gaecum glabrum	10.6 · · · × ·	7:1 2:2 1:7 2:3 2:3	26.1 26.1 26.1 26.1 26.1 26.1	×	$\frac{1}{2}$			
	mixe	A. cf. montagui			0.2			3.5	2·3 3·1	
		ingainom siraish		0.5	0.4 0.2 0.1 	0		1.6	7.9	
		Singula proxima						9.0		
		susibnalnoorg səqirrəZ	3.4 1.1 3.0 0.5	1.3 0.5 × 0.6	1.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.	0.2 0.4 0.6		0.3	. 83.	
		Lwinoma borealis				0.1		0.3		
	_	notratea atrobol $di a$			0.5					SCIENCES
	ratun	osibnolsi nnirqyD						×·×	·× ·	7
	subst	Actaeon tornatilis		0.5		× · · ·				
	rade	S. cf. subtruncata						14.3		
	fine grade substratum	$v_1v_2u_1v_1q_1s$ $v_1v_2v_1q_2$	4			0:1		5.1 8.6 7.0	2.3 5.9	Ţ
		Macoma calcarea	1.5 0.4 1.5	0.5		0·1 ·			12.4	
		A. cf. alba							1:1	IE
		Abra alba	3.6 1.1 7 1.1 1.2 1.4 1.5	10.5 12.2 15.5 10.9 4.8 6.3	13.7 18.7 12.4 10.0 8.2 20.2 16.2 11.9 11.9	32.8 51.4 49.8 33.8	0.5	0.3 5.5 4.6	0.4	
		sampling depths in feet below ordnance datum	155·5 157_158·5 161 161·75 162·5 163·	132·5–133·5 135·75–136·75 143–144 146–147 148–149 148–149 152–153	97-99 101.5-106.75 106.75-108.5 110.5-110 111.5-113.75 117.75-118.75 120.75-121.75 120.75-121.75 123.75-124.75 126.75-128.75 126.75-128.75	85·5–86·5 3 88–91 5 91–94 4	66 69 73 76 80 85	55–57 57–61 61–63	42 45·5–48·5 48·5–55	OF
		limits of assemblage zones suggested in the text	$\text{L.M. 1} a \left\{ \begin{array}{c} 1 \\ \end{array} \right.$	$\mathbb{L}.\mathbb{M}.1b \left\{egin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} ight.$	L.M. 2 1 1 1 1 1 1 1 1 1	L.M. 3	L.M. 4	L.M. 5 {	L.M. 6 {	—OF—

TRANSACTIONS COLLETY SCIENCES

PHILOSOPHICAL THE ROYAL BIOLOGICAL TRANSACTIONS COLLETY

				OKTON	1. 12. 1. 1			104		
Ī		Gastropod sp.	7.7 8.2 0.0 0.0	0.6 0.7 1.4 3.0 3.4	4.7 0.7 0.5 3.0 2.9	3.1	· · · · × ·	3.3 1.6	. 69 69.	
	etc.)	.ds smilnA		8	0.5					
	rved,	·qs sisnA						60		
	prese	.qs vinisoO ?					٠			រ
	poorly preserved, etc.)	\cdot ds $\mathit{binoboldi} U$			0.2			e	1.1.0	
	or po	Clathurella sp.						0		
	(worn or	Gingula sp.	H		1.0					
	rms (.ds 'notin') '	x · x · · ·		× · · · · · · × ·			×	4.0	
	incompletely determinable forms	cardium sp.			$\begin{array}{c} 0.2 \\ 0.11 \\ 0.1 \end{array}$	0.1		×4.3	1:1	
	minal	Cardita sp.	 00 00 00 00 00						٠	_
	deter	Calliostoma sp.	0.0 0.0 0.4 0	9:						H
	etely	.qs sirvis.	0.38.7	0.6 0.4 1.4 1.8 0.9 0.9	0.7 0.5 1.3 1.2 1.1 1.1 3.1	0.1 2.2 2.1	·	1:9 1:9	4.5	
	omple	.qs nimonA			6.8 (6.8 (6.7 1) 0.6 (7 1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					ŏ
	ii	·ds nosoish		0.0)	
		Turritella triplicata f. triplicata	5.1.5 0.4.0 4.0.0	1.0 0 0.5 0 0.9 0.6 6.8	4.4 9.6 1.2 9.8 4.1 9.8 1.2 1.2 1.2	0·4 1·6 3·7				
		Trophon clathratus vax. gunneri	0 1	000	448196618121	0 18		. 6.		
	ion	L. cf. aurita						0	5	OF
	little information	Limopsis aurita		0	· · · · · · · · · · · · · · · · · · ·					
	e info	A. cf. digitaria	0		0.1 0.1 0.1					
	H		Σ Ω							
		nnso nork	.0.5							
	-	ningo nidh						0.3		
	pre- dator	vnbiina nsauidsV	× · · · · · · · · · · · ·	×××ç××	$\cdot \times \cdot \times \times \cdot \cdot \cdot \cdot \cdot$	0.5		9.0	0	
SCS	scal- lop	Chlamys opercularis	· · · · · · ×	· · · · ×	1:9 24.2 3:0 3:0 4:6 0:2 0:2 0:1 0:1 0:1	1.4 1.7 0.8 0.7		×××	·××	
normally sublittoral molluses		Calptraea chinensis	4.0 8.91 8.0 0 9.1	6.4 7.7 13.0 15.7 18.3 12.0	13.5 17.0 17.0 15.8 13.6 15.5 23 23 10.6 6.9 6.9	10.8 7.7 10.5 12.6		0.6 6.0 1.6	. 29.2	IJ
oral n	w w	suloibom suloiboM			0.52			×·×	· · ×	SCIENCES
plitte	epifauna molluscs	Chlamys tigerinus			0.2			··×	· ·×	7
lly su	na m	A. cf. squamula								
lorma	pifau	humanps nimonA	3.9 2.4.2 14.8 3.7.4 ×	9.6 6.6 7.6 4.4 7.4 7.4	8·1 3 1·3 2·4 0·5 10·5 7 7 12·5	3.8 1.2 7.8		3.50 3.20 3.20	7:0	
"	0	Hiakella arctica	9.2 9.4 13.0 13.0	0.1 0.3 0.3 0.3 0.0 0.0	1.22.22.22.22.24 2.14.22.24.22.24 1.72.25.24	1.1 0.4 0.9	$_{I}$ \cdots \cdot	1.3	1:1	
		Acmaea rubella								
		sampling depths in feet below ordnance datum	155-5 157-158-5 161 161-75 162-5 163-5	132-5-133-5 135.75-136-75 143-144 146-147 148-149 152-153	97-99 $101.5-106.75$ $106.75-108.5$ $108.5-10$ $115.75-118.75$ $115.75-118.75$ $120.75-121.75$ $120.75-121.75$ $126.75-121.75$ $126.75-121.75$ $126.75-121.75$	85·5-86·5 88-91 91-94 94-94·5	66 69 73 88 88 88	55–57 57–61 61–63	42 45·5–48·5 48·5–55	SOCIE
		limits of assemblage zones suggested in the text	L.M. 1a	L.M. 1 <i>b</i>	L.M. 2	L.M. 3	L.M. 4	L.M. 5	L.M. 6 {	OF

-OF	L.M. 6	L.M. 5	L.M. 4	L.M. 3	L.M. 2	L.M. 16	L.M. 1a	limits of assemblage zones suggested in the text	
SOCIETY	45·5-48·5 48·5-55	55–57 57–61 61–63	66 69 73 76 80 85	85·5-86·5 88-91 91-94 94-94·5	97–99 101.5–106.75 106.75–108.5 108.5–110 111.5–113.75 115.75–116.75 120.75–121.75 120.75–121.75 123.75–124.75 126.75–128.75	132·5–133·5 135·75–136·75 143–144 146–147 148–149 152–153	155·5 157-158·5 161 161·75 162·5 163	sampling depths in feet below ordnance datum	
H	9.1	1.9		4.6 2.2 1.6 1.6	24 4 7 7 2 2 4 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0	4:21 6:1 6:1 6:1 7:1	.qs olubbula sp.	
_					0.20			Glycymeris sp.	
	4.0							·ds <i>vերրծ</i> չ	
					0.1			.ds hlya sp.	
SC	× · · · · · · · · · · · · · · · · · · ·	6.6	0.5	0.9	0.3 0.8 0.6 0.6 1.9 1.1 3.1	0.000.72 0.0000 0.0000	9.4 6.5 8.4 1.0 1.0	Lamellibranch sp.	
SCIENCES					0	<u>.</u>		·ds uoidə7	
CES		6			0.1 0.1 0.2			Limopsis sp.	
	1.7							·ds vuoovy	
		× · ·	7. · · · · · · · · · · ×	0.1	0.0 0.0 1.2 1.2	$\begin{array}{c} 0.2 \\ 0.2 \\ 0.9 \end{array}$		·qs suloiboM	
					0.6	0.3	:	·ds vinsviuopų	incc
TAI	. 33.	0.5		0.1	0.2			·ds vh _W	incompletely determinable forms (worn or poorly preserved,
LABLE					$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.5	.qz sulin y M	tely d
2) 2				1.2				.qs suirnssnV	etern
Z (come.)							.01	cf. <i>Massarius</i> sp.	inabl
OF-	2.3 7.0	1.3 0.7		0·1 0·8 1·4	0.4 0.4 0.4	3:4 0:5 × 0:6	_	ds vninV	e forn
							1.0 0.9	? Nucella sp.	DS (WC
9	× · ·							·ds vmonnom	rn or
SC		·× ·		^ '0		0	010	.qs www. Qs ostomia	poor
SOC		× · ·		× × · · · · · · · · · · · · · · · · · ·	0.3 2.9 0.8 0.8 1.3 1.2 1.12 2.9 0.9 1.4 1.7 1.5 1.7 1.5 1.6 3.3 2.9 3.8		0.5 1.5 1.0 0.9 1.7	Pyramidellid sp.	ly pre
IETY				. 0.2	9.9 9.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8.6 8	10.6 19.5 1 . 9 .		r dunument ab.	serve
T				62 62	66 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 	ත සල 	·qs biossiA	d, etc.)
	.2.24	1.3 11.6 6.2		0.2 1.7 4.1 8.7	2011 2000 2011	4.68 4.68 1.1 1.1	4.6 6.2 4.4 6.6	·qs shusiq?	
	0.5 2 12.4 2 .	3 2.2 6 6.9 8 8.6			0.00.00.00.00.00.00.00.00.00.00.00.00.0			.qs binitlyT	
	· · ×							.qz biriochid	
SCI				0.1	0.5	1.0 4.1 5.0 5.0	0.5	·ds vilinodruT	
SCIENCES		×·×		0.1				.qs nlisitruT	
ES								·qs birsneV	
		1.3 0.3 0.5		0.5	0.4 0.1 0.1	0.3	7.0 7.0 8.0 8.0	.qs siqursnaV	
		.0			0.1 0.2 0.2 0.4 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		0.0 0.0 4.0	·ds snuə⁄	
		0.5	· · · · ×	1.3	J.33		.00 20 4.0	·qs sibloY	

24

BIOLOGICAL

PHILOSOPHICAL THE ROYAL TRANSACTIONS

BIOLOGICAL

PHILOSOPHICAL THE ROYAL TRANSACTIONS

		ļ	
	ũ	5	U
	Ū	5	H
	C	į	Ž
	5	5	H
	a	5	0
_			
(V	

X	>
	ET
2	\vdash
I E	O
H	0

PHILOSOPHICAL TRANSACTIONS LABLE 2 (cont.)

-1			1	1	I	1	1	ı
	number of individuals in the samples	207 97.5 235 115 165.5 2 and figts	311 286-5 184 115 166-5 175-5	619 400 464 165 220 245.5 213.5 410 415.5 554 564	813.5 90.5 123.5 438	∞ ∞ ⊙ ⊙ ∞ r∪	157 302·5 188·5	5 and 8 frgts 44.5 143.5
	number of species in the samples	45 33 51 28 7	3 2 2 2 3 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88 2 2 3 3 5 3 4 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4	50 23 24 43	7040000	44 39 47	934 37
-	% contri- bution from one individual	0.5 1.0 0.4 0.9 0.6 no %s found	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0.1 1.1 0.2 0.2	no %'s found do. do. do. do. do. do. do. do.	0.6	no %'s found 2.3 0.7
<u> </u>	X. semistriata			0.1				
	Y. cf. oblongoides							5.6
:	səbiognoldo .Y	0.6		0.53	0.5			. 53.
	Voldia lanceolata	7			0.1	· · · · × ·		
	alubonrətni allinodruT		0.5	×.0.0.1.1.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0.0 ×.0.0.0	0.6	ļ. · · · · ·		
	zilornd-lud eunroT	60						
; ies	T. cf. praetenuis					`	e	
extinct species	ziunətəarq anilləT				0.2 0.6 0.1		0.6	6.7
extinc	S. cf. triangulata		1.4 	6.0				
	Spluganit aluziq2.	0.2 1.7 1.3 2.4	0.8 0.4 0.0 0.0	. 20.04.4.09.4.0.0.0.0.0.0.0.0.0.0.0.0.0.0.			0.	1:1
	Solariella maculata							. 53.
	R. cf. obsoleta			6.5 6.0 6.0 7.0 7.0 7.0 7.0	1.2		 0:3	
	R. cf. curticostata	1.3 5.5 10.4 19.3	7.6					4.1
.	Rissoa curticostata	1:0 8:0 8:0 1:0	22:9 21:3 23:4 23:5 16:8 37:0	4.2 3.3 3.3 10.6 10.6 0.4 6.2	18.8 14.4 10.5 1.6	I		
	ϵ surinasi ϵ surinizi ϵ ϵ sabimato ϵ	4						
	sampling depths in feet below ordnance datum	155·5 157-158·5 161 161 161·75 162·5 163	132-5-133-5 135-75-136-75 143-144 146-147 148-149 152-153	97–99 101-5–106-75 106-75–108-5 108-5–110 111-75–118-75 117-75–118-75 120-75–121-75 128-75–124-75 128-75–128-75	$85 \cdot 5 - 86 \cdot 5$ 88 - 91 91 - 94 $94 - 94 \cdot 5$	66 69 73 76 80 85	55–57 57–61 61–63	45·5–48·5 48·5–55
	limits of assemblage zones suggested in the text	L.M. 1a	L.M. 1 <i>b</i>	L.M. 2	L.M. 3	L.M. 4	L.M. 5	L.M. 6

THE ROYAL

THE ROYA

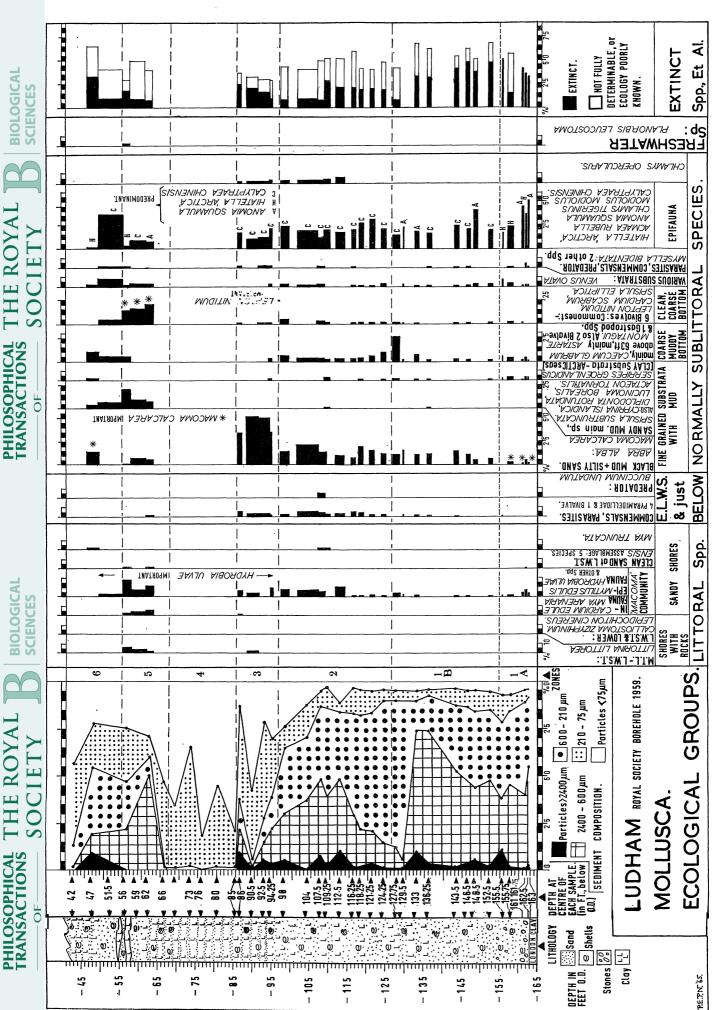


FIGURE 2. Ludham Mollusca (ecological groups) and granulometric analysis. Frequencies are shown to the nearest 1%

Table 3. Bramerton Mollusca

nents only were found.	
dicates that fragn	
l result. An × in	
A dot indicates a nil	
ven as percentages.	
Frequencies are gi	

	B.M. 2	B.M. 1	scsn assemblage zones	nĮĮot	
			Kellia punila	little data	
		10		downer	ı
	·×		Chlamys opercularis	scallop	-
	• •	1.2	C. cf. chinensis		
	e		Sirnen shinensis	epifauna	
		· · · × × · · · · ·	alumaups aimonh	epif	
	.4.2	17.5 17.5 17.6 6.5 0.4 1.8 1.4 2.3	Hiatella arctica		
		· · · · · ×	ขกbisนข ขอนกรุสุร _N	predator	-
	1.7		ntatnabid allesyM	commensal	
	1 2	0.4	Lepton nitidum		ecies
			Venus cf. Jasciala	clean, coarse bottom	normally subtidal species
		· · · · · ×	Cardium cf. scabrum		y suk
		· · · · · · ×	บารคราม สิทธานาม	matter	mall
	1.7		Astarte cf. montagui	mud with	lou
		0.3	S. cf. subtruncata	pnu	
	20.0	.00 0.00 0.00 0.00 0.00 0.00	shonuridus siusiq2	ssudy	
		5.7.	M. cf. calcarea		
	1.7	3. · · · · · · · · · · · · · · · · · · ·	Macoma calcarea	and silty sand	
	0.2	0.9 1.1 0.5 0.4 0.7 1.4 1.4 45.6	ndln nrdA	plack mud	
		0.5	Mya truncata	۵.	ĺ
		2.1	Retusa obtusa	SO SO	
	1.7	$\begin{array}{c} \cdot 0.04 \\ \cdot 0.42 \\ \cdot 1.22 \\ \cdot 1.11 \\ \cdot 1.06 \\ \cdot 0.02 \\ \cdot 0.0$	silubə sulityM	infauna epifauna 'macoma community' animals	
		2.1 2.1 2.3 2.3 3.3	? H. ulvae	epifî ity'a	S
		1.6 12.7 6.4 6.4 37.3 115.4 8.3	saulu nidorbyH	anun	ollus
	3:3 4:8		ม่าถกราม มหูฟ	а	me m
		· · · · · · · · · · · · · · · · · · ·	C. cf. edule	infauna 'macoma	tidal zone molluscs
	15.6	3.5 15.4 12.4 12.4 8.9 8.9 8.9 8.9	Cardium edule	·H	1.13
			Patina pellucida		
		2.1.4	sn _l nidvi nlisonN	rocky shores	
	0.4	$\begin{array}{c c} \cdot \cdot \stackrel{\circ}{_{\cancel{}}} \circ \cdot \cdot \stackrel{\circ}{_{\cancel{}}} \circ \\ \cdot \cdot \stackrel{\circ}{_{\cancel{}}} \circ \circ \circ \circ \circ \\ \end{array}$	Littorina littorea	N. H.	
170 290 440	500	620 710 740 860 920 920 1070 1160	qebths, in cm below top	gnilqmss	

	wojjnacsu sasempjske zones	B.M. 1	B.M. 2	
	·ds snuə _A			
	ribloX ?	.08		
	$\cdot \mathrm{ds} \ \mathit{viblo} Y$		1.7	
	.qe biniilg T	14.7 5.7 6.4 2.8 10 2.5 1.6	13·3 23·2	
	ds vinsids	4. 3.2 3.2 1.2 1.2 1	1.7 1	
	·qs sossiA			
	? Retusa sp.	.8		
	Retusa sp.	1.1 1.8 0.5 2.9	1.6	
	.qs $billid$ $sp.$			
	.qs vimotsobO	· · · · · · ×		
	·ds piuniumN	$1.2 \times \times$	0.4	
	noiinN ?	.8		
ms	·qs with			
le for	·ds vhyv	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.6	
ninab	·ds vinonino de			
leterr	As edioibos sp.	.04	1.7	
tely 6	Macoma calcarea	\cdot 6. \cdot 7. \cdot . \cdot . \cdot . \cdot .		
incompletely determinable forms	Lamellibranch sp.	16 13.9 8.5 1.5 0.5 119.3 1.4	1.5	
inc	cf. Hydrobia sp.		0.4	
	Gippnya sp.	$\begin{array}{c} \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot \\ 1.8 \\ 0.5 \\ \end{array}$	3.3 0.8	
	Gasteropod sp.	21.5 30.2 20.2 1 0.7 3.7 14.7	3.3	
	.qs ninoboldia	0.5		
	Colus sp.	× -		
	cf. Cingula sp.			
	Cingula sp.	0.5		
	Cerithiopsid sp.	0.5		
	Cardium sp.	$\begin{array}{c} \cdot \cdot \\ \cdot \cdot \\ \cdot \cdot$		
	cf. Calyptraea sp.	0		
	cf. Astarte sp.			
	ds only	· · · · · × · · ·		
	ds viqy		0.2	
es	mpling depths, in cm below top	620 710 740 860 920 980 1070 1160 1220	500 580	170 290 440

(cont.)
TABLE 3

	molluscan assemblage zones				B.M. 1				B.M. 2			1	
	S contribution per individual	0.52	0-47	0.36	%'s not found	1.06	0.796	%'s not found	0.4 ∫	3.33			
	no. of species/sample	36 36	88	56	10	18	× €	-:	24	17	0	0	0
	no. of individuals in the sample	192	214.5	281.5	15	94	125.5 165.5	-	249.5	30	0	0	0
	sampling depths in cm. below top	1220	1070	086	920	860	710	620	580	200	440	230	170
	einneteard anilleT		7.9	1.2	٠.	·	4. c	.;	7.4	•	•		
	səpiognoldo nibloY	0.3	0.7	•	•		•		•	1.7	٠		•
	R. obsoleta	0.5	•	•			•		•		•	•	
	Rissoa curticostata	0.5	×		٠.						•		
	eusinssi eutsnisirt esbimatoA		0.5	•	٠.		•				•	•	
ie.	cf. N. lapillus vulgaris	1.4 1.4	•				•			×	•	•	
extinct species	siragluo sullidal allecuM				٠.				0.4			•	
xtinct	M. cf. obliqua			•		3.5	•						
0	Macoma oblidua	2.9	•	0.5	0.5		•		8.6	2.0	•		
	Littorina littorea yar. carinata		•				•		0.4			•	
	hydroby havin nidorby H		•	4.3							•	•	
	Bagaittuį blistingas	0.3		•									
	Cingula semicostata semicostata			•		٠ ،	٠,					•	
	Caecum mammilatum			0.4			•						

OF

P. E. P. NORTON

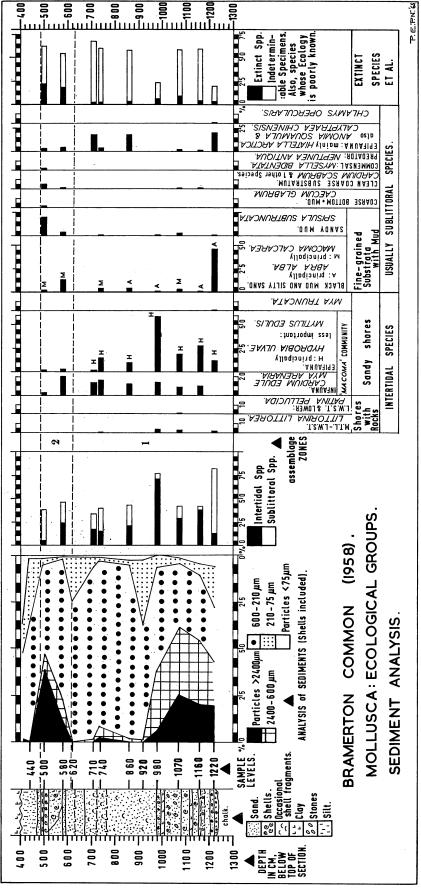


FIGURE 3. Bramerton Mollusca (ecological groups) and granulometric analysis. Frequencies are rounded to the nearest 1%.

Table 4. Sidestrand Mollusca

Frequencies are given as percentages (method of calculation, see p. 168) except where figures in italics represent the actual number of individuals seen. A dot indicates a nil result.

	species	SS/E base	SS/K 1	SS/K 6	S 12 (51)
	(Littorina littorea Macoma balthica	$\overset{ imes}{4\cdot 5}$	${}^{\times}_{39\cdot7}$	•	•
	Cardium edule		39·7 3·8	39.8	<i>5</i> · <i>5</i>
	Mara anonamia	×	3.8 12.8	$3\cdot 1$	•
intertidal	Hydrobia ulvae	$\vec{1}$	1:3	•	•
species	Mytilus edulis	$\stackrel{ au}{0}$.5	$2 \cdot 6$	$\dot{3\cdot 1}$	· 0·5
	Donax vittatus	×	1.9	9.1	0.0
	Zirfea crispata	•		0.8	•
	(Cyprina islandica	1	0.6	1.6	$\theta \cdot 5$
1	Chicala carhtmana ata	1	0.6	7.8	0.0
subtidal species	Astarte montagui	-	0.6	• 0	•
	Corbula gibba	1	•	$\dot{6} \cdot 2$	$\dot{1}$
	(Astarte sp.		0.6		_
	Cardium sp.			$\dot{3\cdot 1}$	•
	Gastropod sp.	2	$\dot{2} \cdot 6$	3.1	\dot{z}
incompletely		$2 \cdot 5$	$1\overline{2} \cdot 8$	13.3	$\tilde{3}$. 5
determinable	$\langle Mya \text{ sp.} \rangle$	•		0.8	
\mathbf{forms}	Pholas sp.		1.9		•
	Spisula sp.	•	0.6	0.8	•
	Tellinid sp.	2.5	$3\cdot 2$	10.9	3
	Yoldia sp.	3	$10\cdot3$	$2\cdot 3$	<i>1</i> ·5
	(Macoma obliqua	2	•		
	Nucella lapillus vulgaris	×		•	•
extinct spp.	⟨ Nucula cobboldiae		×	0.8	0.5
	Yoldia cf. oblongoides	0.5	•	•	
	\Tornus supranitidus ??	•	1.3	•	•
	individuals	20.0	78.0	$64 \cdot 5$	18.0
	species	15	2 0	15	9
	% contribution of 1 individual	-	1.28	1.55	-

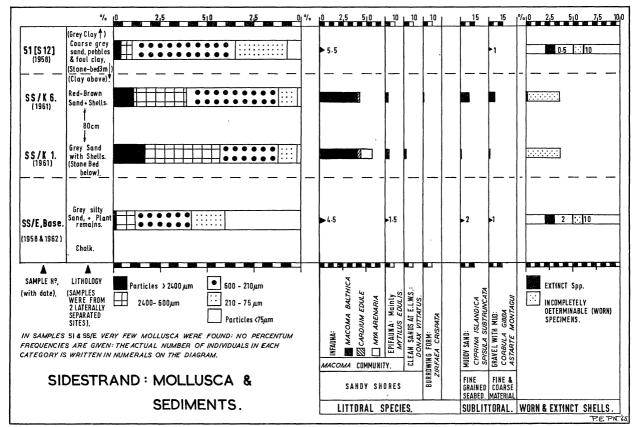


FIGURE 4. Sidestrand Mollusca (ecological groups) and granulometric analysis. Four samples from three horizontally separated localities are represented, see p. 166-167.

25 Vol. 253. B.

APPENDIX. NOTES ON THE MOLLUSCA

This appendix supplements the lists at the foot of tables 2 to 4 by giving authorships and relevant notes. Extinct species are preceded by an asterisk and species whose determinations are uncertain have a query after the author's name. Nomenclature is based on Winckworth (1932, 1951), van Regteren Altena, Bloklander & Pouderoyen (1954, 1955, 1957, 1962), Thiele (1931-35) and Heering (1950). Of the material available for comparative study, much of S. V. Wood's is in the Paleontology Department of the British Museum (Natural History), the Ipswich Museum and the Castle Museum, Norwich. Harmer's material is distributed among the Ipswich Museum, the Sedgwick Museum at Cambridge and the Castle Museum at Norwich.

CLASS AMPHINEURA

Lepidochiton cinereus (Linné, 1767)?.

CLASS GASTROPODA

Patina pellucida (Linné, 1758)??.

- *Acmaea parvula (S. Woodward, 1833).
 - A. rubella (Fabricius, 1780).
- *Solariella maculata S. V. Wood, 1842.
- *Calliostoma noduliferens (S. V. Wood, 1872).
- C. zizyphinum (Linné, 1758). Although the specimens were worn, it is not thought they belong to the extinct subspecies C. zizyphinum simile (J. Sowerby, 1818).
- *Gibbula nehalenniae van Regteren Altena, 1954?. Not previously recorded from the English Early Pleistocene. A paratype and topotype from Boring Haamstede, Schouwen, Netherlands (-96.60 to -103.30 m, Pliocene) was compared. van Regeteren Altena points out that Beets (1946, p. 29) referred young specimens of the present G. nehalenniae (c.f. the adults which he named 'Gibbula species 1') to G. pennanti Philippi. The nearest resemblance of G. pennanti and G. nehalenniae to monographed species from the Crags is stated by van Regteren Altena to lie in the species G. philberti Recluz (Harmer 1923, p. 739, pl. 59, figs. 19-20) which has a smaller apical angle than my specimens, and Margarites crassistriata (R. Bell in S. V. Wood, 1882, p. 10, pl. 1, fig. 15) which has a thicker shell and less evenly rounded body whorl. Compare also with G. beetsi van Regteren Altena, 1954, which has a more pronounced ornament than G. nehalenniae.
- *Gibbula cf. pennanti (Philippi, 1851). Not previously recorded from the English Early Pleistocene. Determined from the description and figure in Spaink (1957).
- *Gibbula cf. spastica Beets, 1946. Not previously recorded from the English Early Pleistocene.

Littorina littorea (Linné, 1758).

- L. littorea var carinata S. Woodward, 1833.
- *Cingula semicostata semicostata (Montagu, 1803). Rissoa, Onoba striata of Wood and Harmer. O. striata is given by Harmer (1920, p. 641) as living, in my opinion because he equated his specimens with Forbes & Hanley's (1850) figure of Rissoa striata, which I find

to resemble C. semicostata aculeus, Gould, 1841 (living). Harmer's figure is of C. semicostata semicostata (extinct; see van Regteren Altena et al. 1954, p. 62, no. 35, pl. 4).

C. proxima (Alder MSS, Thompson, 1847).

- *Rissoa curticostata, S. Wood, 1848. The name R. semicostata Woodward, 1833, used by Wood and Harmer, is a nomen nudum and Wood's suggested name must be used (van Regteren Altena et al. 1954, p. 63).
 - *R. inconspicua Alder, 1844.
 - *R. obsoleta S. V. Wood, 1842.
- *Hydrobia minuta (S. Woodward, 1833). As Paludestrina subumbilicata (Montagu, 1803) in Wood (1848). Many accounts of Hydrobia species in the nineteenth-century literature give the impression that H. minuta is very common in the Norwich Crag. This may be due to the use of the name Hydrobia minuta Totten as a junior synonym of H. ventrosa (Montagu, 1803), although the specimens should often have been named H. ulvae in the first place, there having been erosion at the sutures, giving the whorls a spurious inflated appearance.

H. ulvae (Pennant, 1777).

Caecum glabrum (Montagu, 1803). During growth, the uncoiled, planar spiral shell of this species is broken off several times, the animal continuing to live in the larger part, the tube being closed by a calcareous septum posteriorly and the old portion discarded. When confronted with a number of fossil Caecum shells it is thus not easy to decide how many individuals are represented. The juvenile shell is coiled in a planar spiral, which Wood (1848, p. 117) called Caecum? incurvatum? Walker. Although Carpenter (1858, quoted by Wood 1872–4, p. 87) considered such individuals to be juveniles of C. mammilatum, I find this untrue. Both C. 'incurvatum' and C. glabrum have a sculpture of minute growth lines only, forming a series of extremely fine close-set rings round the shell tube. C. mammilatum has more marked growth rings and the shell is more solid. The breaks which form in C. mammilatum at the formation of a new septum are oblique (and see Harmer 1923, p. 848), but in C. glabrum they are transverse and this is also true of C. 'incurvatum'.

- *C. mammilatum S. V. Wood, 1842. (Jeffreys, in Prestwich 1871, gives it as living off Japan).
 - * Tornus pulchralis (S. V. Wood, 1848).
 - *T. supranitidus (S. V. Wood, 1842).??

Turritella triplicata triplicata (Brocchi, 1814). For a revision of nomenclature of certain Turritella species see van Regteren Altena et al. 1955, pp. 27, 28.

- *Potamides tricinctus var icenica, Harmer, 1918.
- *Clathrus clathratulus minutus (J. de C. Sowerby, 1823). In Wood (1848) as Scalaria clathratula; in Harmer as Scala (Hyaloscala) minuta Sowerby; in van Regteren Altena et al. as Epitonium (Epitonium) clathratulum minutum. The subspecies C. clathratulus clathratulus (Kanmacher, 1798) is living.

Calyptraea chinensis (Linné 1758).

Trophon clathratus var gunneri (Loven 1846)

- *Nucella lapillus vulgaris (S. V. Wood 1848).
 - N. lapillus (Linné, 1758). A few specimens from Bramerton appeared to have

195

the less inflated whorls and less powerful sculpture of the extant subspecies; where the specimens are worn the separation of the subspecies is extremely difficult.

Buccinum undatum (Linné, 1758).

Neptunea antiqua (Linné, 1758).

*Nassarius consociatus (S. V. Wood, 1848).

*N. elegans (Leathes MSS, J. Sowerby, 1825).

N. incrassatus (Ström, 1768).

Mangelia ambigua (Brugnone, 1862)?.

Actaeon tornatilis (Linné, 1758).

Retusa obtusa (Montagu, 1803). In Wood (1848), as Bulla regulbiensis Adams, 1798; in Wood and Harmer later as Bulla or Utriculus obtusus; in Winckworth as Retusa alba Kanmacher, 1798.

Chrysallida indistincta (Montagu, 1803). Not previously recorded in the Crags.

- C. obtusa (Brown, 1827). In Wood (1848) as Odostomia pupa (Dubois, 1831); in Wood and Harmer later as Odostomia or Pyrgulina interstincta (Montagu).
- C. spiralis (Montagu, 1803). Harmer records this species from St Erth and Selsey but not from the Crags.

Odostomia conoidea (Brocchi, 1814). In Wood (1848) as O. plicata (Montagu). Sorgenfrei (1958, p. 313) found that the protoconch is usually hidden in the first adult whorl. In my specimens and those of the General Collection of British Pyramidellidae in the British Museum (Nat. Hist., Dept. of Zoology) the second and third and sometimes the first protoconch whorls were in part visible (this difference may be due to erosion).

O. scalaris Macgillivray, 1843. In Harmer (1920) as O. risoides Hanley, 1844. The fossil shells have a somewhat rugose exterior due to decay along transverse lines of growth, and are not translucent. Recorded by Harmer from St Erth but not the Crags. This species parasitises Mytilus edulis which was common in the samples.

Turbonilla elegantissima (Montagu, 1803). In Wood and Harmer as Chemnitzia elegantion or Turbonilla lactea.

*T. internodula (S. V. Wood, 1848).

Planorbis leucostoma Millet. As Planorbis spirorbis Müller 1774 in Wood and Harmer. One apex and one fragment of the outermost whorl were found. This is a freshwater species.

CLASS BIVALVIA

*Nucula cobboldiae J. Sowerby, 1817.

N. nucleus (Linné, 1758).

- *Yoldia lanceolata (J. Sowerby, 1817).
- *Y. oblongoides (S. Wood, 1840). In Wood (1851-61) as Leda myalis. This is a frequent mistake in identification of Crag specimens and leads to confusion when the Leda-myalis bed of the Cromer Forest Bed Series (in which L. myalis really does occur) is spoken of.
 - *Y. semistriata (S. V. Wood, 1840).
- *Glycymeris glycymeris variabilis (J. Sowerby, 1824). In Wood as Pectunculus glycimeris. More dorsoventrally elongated and less inflated than the extant G. glycymeris glycymeris which according to Heering (1950) is unknown in the Early Pleistocene.
 - *Limopsis anomala (Eichwald, 1830). In Wood as Limopsis pygmaea (Philippi).

*L. aurita (Brocchi, 1814).

Modiolus cf. modiolus (Linné, 1758).

Mytilus edulis, Linné, 1758.

Chlamys opercularis (Linné, 1758).

C. tigerinus (Müller, 1776).

Anomia squamula (Linné, 1758). The interesting growth forms which this species may attain through its habit of attaching by the right side to hard objects (other molluscs, stones, even corks; van Regteren Altena 1937) were unrepresented in the fossils. It was also impossible to use Winckworth's method of identification using the muscle scars (Winckworth 1922, p. 34) except in a few doubtful cases.

NORFOLK CRAG MOLLUSCAN ASSEMBLAGES

*Astarte basterotii de la Jonkaire, 1823. Heering (1950) gives descriptions and plates which I found very helpful in determining the Astarte species.

- A. digitaria (Linné, 1767).
- *A. incerta S. V. Wood, 1853.
- A. montagui (Dillwyn, 1817). In Wood as A. compressa.
- *A. obliquata J. Sowerby, 1817.
- *A. cf. parvula S. V. Wood, 1840.
- *Cardita chamaeformis (Leathes MSS, J. Sowerby, 1826).
 - *C. orbicularis (Leathes MSS, J. Sowerby, 1825).
 - *C. scalaris (Leathern MSS, J. Sowerby, 1825).

Cyprina islandica (Linné, 1767).

- *Diplodonta astartea (Nyst, 1835).
 - D. rotundata (Montagu, 1803).

Lucinoma borealis (Linné, 1767).

Divaricella divaricata (Linné, 1758).

*D. juttingae G. Spaink, 1965. This species is known only in the Pliocene and Early Pleistocene and is based partly on my specimens from Ludham (-57 to -61 ft. o.d.) and Bramerton (1220 cm below surface).

Lepton nitidum, Turton, 1822.

Tellimya pumila, S. Wood, 1840. This species is believed living on the basis of Jeffreys (in Prestwich 1871), and Thiele (1935), but I have no details of its ecology.

Montacuta ferruginosa (Montagu, 1808).

Mysella bidentata (Montagu, 1803).

*Laevicardium decorticatum (S. V. Wood, 1840).

Serripes groenlandicus (Bruguière, 1789). In Wood as Cardium groenlandicum Chemnitz.

- C. edule Linné, 1758.
- *C. parkinsoni J. Sowerby, 1814.
- C. scabrum Philippi, 1844. In Wood as C. nodosum.

Gouldia minima (Montagu, 1803)

Callista chione (Linné, 1758).

Venus c.f. fasciata (Da Costa, 1778).

V. ovata (Pennant, 1777).

Venerupis spec., either decussatus or pullastra. The numerous specimens were hinge fragments with cardinal teeth but little else remaining.

198

P. E. P. NORTON

Spisula elliptica (Brown, 1827). In Wood as Mactra ovalis. Determined with reference to van Urk (1959). The species is not easy to identify and probably many references from the past should be S. solida.

S. subtruncata (Da Costa, 1778).

*S. triangulata (S. V. Wood, 1857).

Donax vittatus (Da Costa, 1778).

Abra alba (W. Wood, 1802).

A. ovata (Philippi, 1836). In Wood (1851-61) as A. obovalis S. Wood, 1840.

A. obovalis S. Wood, 1840.

Arcopagia crassa (Pennant, 1778).

Macoma balthica (Linné, 1758).

M. calcarea (Gmelin, 1791). In Wood as Tellina lata.

*Macoma obliqua (J. Sowerby, 1817).

* Tellina praetenuis Leathes MSS, Woodward, 1833.

T. fabula Gmelin, 1791.

Ensis ensis (Linné, 1758).

E. siliqua (Linné, 1758).

Corbula gibba (Olivi, 1792). In Wood as C. striata.

Mya arenaria Linné, 1758.

Hiatella 'arctica' (Linné, 1767). In Wood as Saxicava rugosa (Pennant). Hunter (1949) gives characters for determination of H. arctica and H. rugosa.

Zirfaea crispata (Linné, 1758).

REFERENCES

- Altena, C. O. van Regteren. 1937 Bijdrage tot de kennis der fossiele, subfossiele en recente mollusken, die op het Nederlandsche strand aanspoelen, en hunner verspreiding. Nieuwe Verh. Bat. Gen. Proefonderv. Wijsbeg.
- Altena, C. O. van Regteren, Bloklander, A. & Pouderoyen, L. P. 1954 De fossiele schelpen van de nederlandsche stranden en zeegaten 1. Basteria 18 (4); 1955 ditto, 2. Basteria 19 (2-3); 1957 ditto, 4. Basteria 21 (4-5); 1962 ditto, Tweede serie, 1. Basteria 26 (1-2).
- Baden-Powell, D. F. W. 1956 The correlation of the Pliocene and Pleistocene Marine beds of Britain and the Mediterranean. Proc. Geol. Ass. Lond. 66, 271-292.
- Beets, C. 1946 The Pliocene and Lower Pleistocene Gastropods in the collections of the Geological Foundation in the Netherlands. Meded. Geol. Sticht. Ser. C-IV-I, no. 6.
- Brøgger, W. C. 1900–1901 Om de senglaciale og postglaciale nivåforandringer i Kristianiafeltet (Molluskfaunan). Kristiania: Aschehoug.
- Brotzen, F. 1951 Bidrag till de svenska marine kvartäravlagringarnas stratigrafi. Geol. Fören. Stockh. Förh. 73, 57.
- Charlesworth, E. 1836 On the Crag of Suffolk, and on the fallacies connected with the method usually employed for ascertaining the relative age of tertiary deposits. Phil. Mag. (3), 8, 529.
- Eisma, D. 1966 The distribution of Benthic marine molluscs off the main Dutch Coast. Neth. J. Sea Res. 3(1), 107–163.
- Feyling-Hanssen, R. F. 1957 Micropaleontology applied to soil mechanics in Norway. Norg. geol. Unders. 197, 1-69.
- Fischer, P. H. 1948 Données sur la résistance et la vitalité des Mollusques. J. Conchyliol. 88, 100-140. Forbes, E. & Hanley, S. 1848-1853 A history of British Mollusca, and their shells, 1 (1848), 2 (1849), 3 (1850), 4 (1852–53). London: van Voorst.

- Ford, E. 1923 Animal communities of the level sea-bottom in the waters adjacent to Plymouth. J. Mar. Biol. Ass. U.K. 13, 164.
- Fretter, V. & Graham, A. 1962 British Prosobranch Molluscs. London: Ray Society.
- Funnell, B. M. 1961 a The climatic and stratigraphic significance of the Early Pleistocene Foraminifera of the North Sea Basin. Cambridge: Ph.D. Thesis.
- Funnell, B. M. 1961 b The Paleogene and Early Pleistocene of Norfolk. Trans. Norfolk Norw. Nat. Soc. 19, 340–356.
- Funnell, B. M. & West, R. G. 1962 The Early Pleistocene of Easton Bavents, Suffolk. Q. Jl Geol. Soc. Lond. 117, 125–141.
- Hafsten, U. 1960 Pollen-analytic investigations in South Norway (vegetation, climate, shoreline displacement, land occupation). Norg. geol. Unders. 208, 434-462.
- Harmer, F. W. 1898 The Pliocene deposits of the east of England. I. The Lenham Beds and the Coralline Crag. Q. Jl Geol. Soc. Lond. 54, 308–356.
- Harmer, F. W. 1900 The Pliocene deposits of the east of England. II. The Crag of Essex (Waltonian) and its relation to that of Norfolk and Suffolk. Q. Jl Geol. Soc. Lond. 56, 705-738.
- Harmer, F. W. 1902 A sketch of the Later Tertiary History of East Anglia. Proc. Geol. Ass. Lond. **17**, 416, 479.
- Harmer, F. W. 1905 L'horizon Weybournian du Crag Icenien dans l'Est de l'Angleterre. Bull. Soc. Belg. Geol. Pal. Hydr. 19, 322-328.
- Harmer, F. W. 1914-25 The Pliocene Mollusca of Great Britain. 1 (1914, 1915, 1918, 1919), 2 (1920, 1921, 1923, 1925). London: Paleontographical Society.
- Heering, J. 1950 Pelecypoda (and Scaphopoda) of the Pliocene and Older-Plistocene deposits of the Netherlands. Meded. geol. Sticht. Ser. C-IV-1, no. 9.
- Hessland, I. 1946 Marine Schalenablagerungen Nord-Bohusläns. Bull. geol. Instn Univ. Uppsala **31**, 1–348.
- Hunter, W. R. 1949 The structure and behaviour of Hiatella gallicana (Lamarck) and H. arctica (L.) with special reference to the boring habit. Proc. Roy. Soc. Edinb. (B), 63, 271-289.
- Johansen, A. C. 1901 Om aflejringen af Molluskernes Skaller i Indsoer og i Havet. Vidensk. Medd. dansk naturh. Foren. Kbh.
- Lyell, C. 1839 On the relative ages of the Tertiary deposits commonly called "Crag" in the Counties of Norfolk and Suffolk. Ann. Mag. Nat. Hist., Ser. 2, 3, 313.
- Petersen, C. G. J. 1913 Valuation of the sea. II. The animal communities of the sea bottom and their importance for Marine Zoogeography. Rep. dan. biol. Sta. 21.
- Prestwich, J. 1871 On the structure of the Crag-beds of Norfolk and Suffolk (with synoptical lists of Mollusca by J. G. Jeffreys). Q. Jl Geol. Soc. Lond. 27, 115.
- Reid, C. 1882 The Geology of the Country around Cromer. Mem. Geol. Surv. U.K.
- Reid, C. 1890 The Pliocene Deposits of Great Britain. Mem. Geol. Surv. U.K.
- Sorgenfrei, T. 1958 Molluscan assemblages from the Middle Marine Miocene of South Jutland and their environments. Danm. geol. Unders. II Raekke, 79.
- Spaink, G. 1957 Beschrivingstabel van Nederlandsche Mariene Mollusken, II, Gibbula. Het Zeepard, Jaarg. 17 (5).
- Spaink, G. 1965 Divaricella juttingae nov. spec. from the Older Pleistocene in Western Europe. Basteria 29, p. 55.
- Spaink, G. & Norton, P. E. P. 1967 The stratigraphical range of Macoma balthica (L.) [Bivalvia, Tellinacea] in the Pleistocene of the Netherlands and Eastern England. Meded. geol. Sticht. (N.S.) 18, 39-44.
- Spräck, R. 1935 On the importance of quantitative investigations of the bottom fauna in marine biology. J. Cons. Int. Explor. Mer 10, (3).
- Tesch, P. 1927 Over de stratigraphie van het jongere Plioceen en ondere Pleistoceen in Nederland. Vers. Geol. Sect. geol. mijnb. Genoot., Nederland & Kolon.
- Tesch, P. 1942 De Noordzee van historisch-geologisch Standpunt. Meded. Rijks geol. Dienst. (Sticht.) A9.

200

P. E. P. NORTON

- Thiele, J. 1931-35 Handbuch der systematischen Weichtierkunde. 1 (1931), 2 (1935). Jena: Fischer.
- Thorson, G. 1946 Reproduction and larval development of Danish marine bottom invertebrates, with special reference to the planktonic larvae in the Sound (Øresund). Meddr. Kommn Danm. Fisk.- og Havunders. Ser 4 Plankton, 4 (1).
- Thorson, G. 1966 Some factors influencing the recruitment and establishment of marine benthic communities. Neth. Jl Sea Res. 3 (2), 267-293.
- Urk, R. M. van 1959 De Spisula's van het Nederlandse Strand. Basteria 23 (1–2).
- Voorthuysen, J. H. van 1962 De Geologische Dienst als Gastheer van het colloque européen de Micropaléontologie. Jaarsv. geol. Sticht. 1961. 66.
- West, R. G. 1961 Vegetational History of the Early Pleistocene of the Royal Society Borehole at Ludham, Norfolk. Proc. Roy. Soc. B 155, 437-453.
- West, R. G. & Wilson, D. G. 1966 Cromer Forest Bed Series. Nature, Lond. 209, 497-498.
- Winckworth, R. 1922 Note on the British species of Anomia. Proc. Malac. Soc. Lond. 15, 32-34.
- Winckworth, R. G. 1932 A list of the marine Mollusca of the British Isles. J. Conchol. 19, 217–252.
- Winckworth, R. 1951 A list of the marine Mollusca of the British Isles. Additions and Corrections. J. Conchol. 23, 131-134.
- Wood, S. V. 1848-82 A monograph of the Crag Mollusca. 1 (1848), 2 (1851, 1853, 1857, 1861), 1st Suppl. (1872, 1874), 2nd Suppl. (1879), 3rd Suppl. (1882). London: Paleontographical Society.
- Wood, S. V. 1866 On the structure of the Red Crag. Explanation of the diagram-section by S. V. Wood, Jnr. Q. Jl Geol. Soc. Lond. 22, 538.
- Wood, S. V. Jnr. & Harmer, F. W. 1868 On the Glacial and Postglacial structure of Norfolk and Suffolk. Rep. Br. Ass. (Geology) Norwich 1868, 80.
- Woodward, H. B. 1881 The geology of the country around Norwich. Mem. Geol. Surv. U.K.
- Zagwijn, W. H. 1957 Vegetation, climate and time-correlations in the Early Pleistocene of Europe. Geol. en Mijnb. (N.S.) 19, 223-244.
- Zagwijn, W. H. 1960 Aspects of the Pliocene and Early Pleistocene vegetation in the Netherlands. Meded. geol. Sticht. Ser. C-III-1 (5).
- Zagwijn, W. H. 1963 Pollen-analytic investigations in the Tiglian of the Netherlands. Meded. geol. Sticht. (N.S.) 16, 49-71.